Классификация тиристоров и их условные обозначения



Тиристором называется полупроводниковый прибор с двумя статическими состояниями (состояние высокой проводимости – тиристор открыт, и состояние низкой проводимости – тиристор закрыт). Тиристор может быстро переключаться из закрытого состояния в открытое, и наоборот.

 

 

Классификация тиристоров происходит по следующим признакам: по количеству их выводов, по способу выключения и управления, по виду вольтамперной характеристике и по ряду другим признакам.
В зависимости от количества выводов подразделяют:

  • Тиристоры диодные или динисторы, которые имеют только два вывода (анод и катод).
  • Тиристоры триодные имеют три вывода (анод, катод и управляющий электрод). К ним относятся: тиристоры, запираемые тиристоры, тиристор-диод и симистор.
  • Тиристоры четырехэлектродные или тетродные имеют четыре вывода (пару входных и пару выходных электродов). К ним относят тиристорную оптопару.

По виду ВАХ подразделяют на:

  • тиристоры, которые не проводят в обратном направлении (динисторы, тиристоры и запираемые тиристоры);
  • тиристоры, которые проводят в обратном направлении (тиристор-диод);
  • симметричные тиристоры, которые переключаются в открытое состояние в любых направлениях (симисторы или триаки).

По виду выключения тиристоры классифицируют на незапираемые (выключение возможно только по выходной анодной цепи) и запираемые (выключение обеспечивается по входной управляющей цепи).
В зависимости от того, каким сигналом осуществляется управление тиристором, они подразделяют на тиристоры, которые управляются внешним электрическим сигналом; фототиристоры, управляемые внешним оптическим сигналом; оптотиристоры – управляются внутренним оптическим сигналом, генерируемым излучателем.

41)Двухэлектродные тиристоры ( динисторы )

Динистором (или диодным тиристором) в электронике принято именовать неуправляемый тиристор, у которого наличествует только два выхода. Один из них называется анодом (это крайняя p-область), а второй – катодом (это крайняя n-область).

Двухэлектродный тиристор ( динистор )

В тех случаях, когда на анод динистора от источника напряжения подается «минус», а на катод, соответственно, «плюс», то через него протекает совсем небольшой обратный ток. Это происходит потому, что при таком подключении крайние p-n-переходы оказываются включенными не в прямом, а в обратном направлении.

Если полярность подключения внешнего источника изменяется на обратную, то в прямом направлении включаются переходы 1 и 3, а переход 2, расположенный между ними – в направлении обратном. Что касается такого показателя, как сопротивление между катодом динистора и его анодом, то оно при этом также достаточно велико. Это приводит к тому, что через прибор протекает ток I зкр, имеющий небольшое значение. Его измеряют при напряжении U пр.зкр.макс, то есть максимально допустимым тогда, когда тиристор находится в закрытом положении.

В тех случаях, когда происходит дальнейшее увеличение прямого напряжения, обратное напряжение, имеющееся на среднем p-n переходе, падает. Как следствие, растет проходящий через динисторпрямой ток. Когда прямое напряжение достигает некоторого значения, называющегося напряжением включения (U вкл), происходит открытие среднего перехода. Вследствие этого сопротивление между катодом и анодом падает достаточно серьезно и составляет всего несколько десятых долей Ом. В таких случаях говорят, что динистор находится в открытом состоянии, и при этом падение напряжения на нем составляет только около 1-2 В. Следует заметить, что оно очень незначительно зависит от величины того тока, который протекает через этот полупроводниковый прибор. Чаще всего в справочниках указывается только то значение напряжения открытого динистора U откр, которое возникает тогда, когда через него протекает максимально допустимый постоянный ток I откр. макс..

Для того чтобы привести динистор в открытое состояние требуется такое напряжение его включения, которое составляет несколько сотен вольт. До тех пор, пока через этот прибор протекает ток, величина которого не меньше, чем ток удержания I уд., он находится в открытом состоянии. Чтобы перевести его в состояние закрытое, надо или произвести полное отключение, или хотя бы уменьшить напряжение внешнего источника до величины 1 В.

 

Трехэлектродные тиристоры ( тринисторы )

От динистра тринистор с точки зрения своей конструкции отличается только тем, что у него есть еще один, третий вывод, который выведен от одной из средних областей. Он является управляющим, и именно благодаря его наличию прибор можно открывать даже тогда, когда значение напряжения меньше, чем U вкл. и даже U пр.зкр.макс.. Чтобы это сделать, нужно всего лишь пропустить открывающий ток I у.от. через управляющий электрод. Чем большее значение этого тока, тем меньше величина напряжения U вкл., при котором тринистор отпирается.

Трехэлектродный тиристор ( тринистор )

Если в качестве нагрузки в анодную цепь тринистора включено активное сопротивление (лампа накаливания, резистор, паяльник и т.п.), то следующий от анода к катоду основной ток растет очень быстро, практически мгновенно. Для того чтобы открыть тринистор, достаточно подать на управляющий электрод очень короткий импульс (несколько микросекунд). Стоит отметить, что положительный импульс подаётся если управляющий электрод присоединен к р-базе, а отрицательный импульс если соединение планируется с n-базой.

Чтобы перевести тринистор в закрытое состояние из состояния открытого, то нужно всего лишь значение основного тока сделать меньше, чем I уд.. Чаще всего в цепях, где протекает постоянный ток, это делается краткосрочным пропусканием через прибор обратного тока (его значение должно быть больше, чем значение тока основного). Чтобы это сделать, применяют специализированное коммутационное устройство.

P — n-переход

p — n-перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — разновидность гомопереходов, область полупроводника, в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p.

Электронно-дырочный переход может быть создан различными путями:

1. в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (n-область), а в другой — акцепторной (p-область);

2. на границе двух различных полупроводников с разными типами проводимости.

Если p — n-переход получают вплавлением примесей в монокристаллический полупроводник, то переход от n- к р-области происходит скачком (резкий переход). Если используется диффузия примесей, то образуется плавный переход.

Физика p — n-перехода

При контакте двух областей n- и p- типа из-за градиента концентрации носителей заряда возникает диффузия последних в области с противоположным типом электропроводности. В p-области вблизи контакта после диффузии из неё дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n-области — нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда (ОПЗ), состоящая из двух разноимённо заряженных слоёв. Между нескомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле, направленное от n-области к p-области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт — устанавливается равновесное состояние (при этом есть небольшой ток основных носителей из-за диффузии, и ток неосновных носителей под действием контактного поля, эти токи компенсируют друг друга). Между n- и p-областями при этом существует разность потенциалов, называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p-области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p-области, то потенциальный барьер понижается (прямое смещение), а ОПЗ сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p — n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается (инжекция неосновных носителей). Одновременно в p- и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.

Приложение отрицательного потенциала к p-области (обратное смещение) приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются (для них барьера не существует). Неосновные носители заряда втягиваются электрическим полем в p — n-переход и проходят через него в соседнюю область (экстракция неосновных носителей). Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p — n-переход течёт ток Is (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольт-амперная характеристика p — n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 105 — 106 раз. Благодаря этому p — n-переход может использоваться для выпрямления переменных токов (диод).


Дата добавления: 2018-02-28; просмотров: 2051; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!