Вторичная цифровая система передачи ИКМ120



Вторичной ЦСП с ИКМ, отвечающей рекомендациям МККТТ по европейской иерархии, является серийная система ИКМ-120. Она предназначена для организации каналов на местных и зоновых участках первичной сети по кабелям типов ЗКНАП и МКС. Основным узлом системы ИКМ-120 является устройство образования типового вторичного цифрового потока со скоростью передачи 8448 кбит/с из четырех первичных со скоростями передачи 2048 кбит/с (рис 1.3) При использовании четырех комплектов АЦО-30 первичной ЦСП можно получить 120 каналов ТЧ, при этом, как и в первичных ЦСП, сохраняются все варианты организации вместо каналов ТЧ каналов ПДИ, ЗВ и т. д.

 1.3. Структура ЦСП ИКМ-120

Линейный тракт организуется по двухкабельной схеме, но на местных участках сети допускается и однокабельная. Номинальная схема кабельного участка lуч=5 км, максимальная длина секции дистанционного питания lдптах=200 км. Максимальная длина переприемного участка ТЧ Lmax=600км, что соответствует и максимальной протяженности зонового участка первичной сети.

Цифровой поток в точке сетевого стыка СС2 между ВВГ и ОЛТ системы ИКМ-120 имеет параметры, соответствующие рекомендациям МККТТ, и потому может использоваться для организации связи посредством типовой аппаратуры по РРЛ и ВОЛС.

Вторичный цифровой поток разделяется на циклы длительностью Тц=125мкс, состоящие из 1056 разрядных интервалов. Цикл подразделяется на четыре одинаковых по длительности субцикла (рис. 1.4.). Первые восемь позиций I субцикла заняты синхросигналом объединенного потока (111001100), а остальные 256 позиций (с 9-й по 264-ю включительно) - информацией посимвольно объединенных исходных (четырех) потоков. На рисунке на соответствующих позициях отмечены номера символов исходных потоков. Первые четыре позиции II cубцикла заняты первыми символами команд согласования скоростей (КСС), а следующие четыре позиции - сигналами СС. Вторые и третьи символы КСС (команда положительного согласования имеет вид 111,а отрицательного - 000) занимают первые четыре позиции III и IV субциклов.

Рис. 1.4. Временной спектр ЦСП ИКМ-120

Распределение символов КСС позволяет защитить команды от воздействия пакетов импульсных помех. Позиции 5,...,8 субцикла III используются для передачи сигналов ДИ (две позиции), аварийных сигналов (одна позиция) и вызова служебной связи (одна позиция). В IV субцикле на позициях 5,..., 8 передаётся информация объединяемых потоков при отрицательном согласовании скоростей. При положительном согласовании скоростей исключается передача информации на позициях 9,..., 12 IV субцикла. Таким образом, общее число информационных символов в цикле 1024+4. Поскольку операция согласования скоростей производится не чаще чем через 78 циклов, позиции 5,...,8 субцикла IV занимаются очень редко, и поэтому их используют для передачи информации о промежуточных значениях и характере изменения скоростей объединяемых потоков. [4].

1.3.2) Третичная цифровая система передачи ИКМ480

Рекомендациями МККТТ на третичные ЦСП европейской иерархии отвечают 480-канальные системы (ИКМ-480), которые предназначаются для использования на внутризоновых и магистральных участках первичной сети. С помощью комплекса аппаратуры ИКМ-480 организуются пучки каналов по кабелям типа МКТ-4 с коаксиальными парами малого диаметра (1,2/4,6мм).

Структурная схема ЦСП типа ИКМ-480 показана на рис. 1.5. На входы оборудования третичной временной группы (ТВГ) - точки сетевых стыков СС2 – поступают четыре типовых вторичных потока со скоростями передачи 8448 кбит/с, которые объединяются в типовой третичный поток со скоростью передачи 34368 кбит/с. В точке СС3 оборудования ТВГ и ОЛТ параметры третичного цифрового потока соответствуют рекомендациям МККТТ, что позволяет использовать оборудование ТВГ для образования как ЦСП следующей ступени иерархии (четверичной),так и линейных трактов на ВОЛС.

 Рис. 1.5. Структура ЦСП ИКМ-480

Временной спектр линейного сигнала системы ИКМ-480 показан на рис. 1.6. Он разделен на циклы длительностью Тц=62,5 мкс, что в 2 раза меньше периода дискретизации сигналов ТЧ. Цикл состоит из трех равных по времени субциклов (а не четырех, как в других ЦСП с временным группообразованием), в каждом из которых содержится по 716 разрядных интервалов, причем первые 12 из них занимаются служебными сигналами (цикловым синхросигналом, сигналами КСС и т.д.), а остальные — информацией посимвольно объединенных четырех вторичных потоков. Общее число позиций в цикле равно 2148, из них информационных - 2112+4. Такая структура цикла и его длительность предопределены необходимостью относительно частого повторения циклового синхросигнала.

 

Рис. 1.6. Временной спектр ЦСП ИКМ-480

Для повышения эффективности аппаратуры был разработан вариант системы ИКМ-480х2,в котором два третичных цифровых потока (34368 кбит/с) объединяются, а затем кодируются кодом FOMOT. Последний относится к блочным кодам типа 4В3 Т, в которых исходный цифровой поток, состоящий из бинарных импульсов (+1, 0), разбивается на группы по четыре символа, каждая из которых заменяется трехсимвольной группой троичного кода (+1,-1, 0). При этом тактовая частота снижается в 4/3 раза. Поскольку при объединении двух потоков тактовая частота удваивается, то в данном случае имеет место ее увеличение лишь 1,5 раза, что в сочетании с некоторым усовершенствованием регенераторов позволяет сохранить длину регенерационного участка 3 км.

Создание линейных трактов на одномодовых оптических волокнах с малым километрическим затуханием существенно повышает эффективность третичных ИСП. В частности, применение волоконно-оптических вставок в линии передачи на кабелях с металлическими парами позволяет уже сейчас увеличить длину секции ДП третичной ЦСП до 246 км и, следовательно, осуществлять замену действующих систем К-300 на ИКМ-480 и ИКМ-480х2 при сохранении мест располо­жения обслуживаемых промежуточных пунктов.

Помимо указанных вариантов третичных ЦСП была разработана аппаратура ИКМ-480с и ИКМ-480р. Первая из них предназначается для использования на симметричных кабелях с целью замены действующей аналоговой аппаратуры К-60п. Второй в настоящее время заменяется распределительная аппаратура К-300р на комбинированном кабеле типа КМ-8/6.

Цифровой канал, в зависимости от значения скорости передачи сигналов электросвязи, называют основным, первичным, вторичным, третичным, четверичным.

Канал основной цифровой (ОЦК) (Basic Digital Circuit) - типовой цифровой канал передачи со скоростью передачи сигналов 64 кбит/с. [4]

 


STM-1

Первичным цифровым потоком СЦИ является модуль STM-1, имеющий скорость передачи 155, 52 Мбит/с.

Модуль STM-1 состоит из 2430 байт и обычно изображается в виде таблицы из 9 строк по 270 байт (рис.1.7). Период повторения STM-1 составляет 125 мкс, что соответствует частоте повторения 8000 Гц. Каждый байт соответствует каналу со скоростью передачи 64 кбит/с.


Рис.1.7. Представление STM-1

STM-1 содержит три основные блока (Рис. 1.8):

· секционный заголовок SOH (Section Overhead)

· блок нагрузки (payload)

· указатель PTR (pointer)

Рис. 1.8. Структура кадра STM-1

Байты STM-1 передаются, начиная с левого верхнего угла слева направо, сверху вниз.

Блок SOH размером 8 9 байт несет служебную информацию, в том числе синхросигнал, байты для обслуживания, контроля и управления. Подразделяется на заголовок регенерационной секции (RSOH - regenerator SOH) и заголовок мультиплексной секции (MSOH - multiplex SOH).

Сигналы нагрузки (от 2 до 140 Мбит/с в соответствии с G.702) транспортируются в области нагрузки размером 9 261 байт. Эти сигналы объединяются в модуль STM-1 в соответствии с определенными правилами.

Фазовое соотношение между нагрузкой и кадром STM фиксируется в указателе PTR, что позволяет определить местоположение нагрузочных сигналов в блоке нагрузки. В результате имеется возможность доступа к одиночным каналам без необходимости полного демультиплексирования STM-1. Используются три указателя каждый длиной 3 байта.

STM-N

Высокоскоростные потоки СЦИ организуются побайтным мультиплексированием нескольких STM-1 и называются синхронными транспортными модулями уровня N STM-N (рис. 1.9). Скорость STM-N составляет N 155,52 Мбит/с.

Рис. 1.9Формат STM-N

В настоящее время, как отмечалось выше, стандартизированы уровни 4, 16 и 64: STM-4 4 155,52 Мбит/с = 622,08 Мбит/с, STM-16 16 155,52 Мбит/с = 2,48832 Гбит/с и STM-64 64 155,52 Мбит/с = 9,95328 Гбит/с.

Структура кадра STM-N соответствует структуре STM-1, с тем отличием, что передаются N 9 270 байт за 125 мкс. Байты заголовков, указателей и нагрузки объединяются в аналогичные три блока (рис. 1.9).

При мультиплексировании байты нагрузки объединяемых STM-1 объединяются побайтно в нагрузку STM-N без буферизации. Позиция STM-1 в составе STM-N может отличаться от исходной из-за возможного фазового различия между STM-1 и STM-N. Каждый индивидуальный указатель должен быть изменен в соответствии с этим фазовым различием. Данная операция называется согласованием указателей.

Как N модулей STM-1 могут быть объединены в один модуль STM-N, так и M модулей STM-N могут быть объединены в один модуль STM-M N. Действует следующее основное правило: если объединяются M модулей STM-N в модуль STM-M N, то из каждого объединяемого потока STM-N берется по N байт, т.е. применяется N-байтное мультиплексирование.

Соответственно, по одному байту от каждого STM-1 объединяются в STM-N. Аналогично объединяются по 4 байта от каждого STM-4 при образовании STM-16.

Достоинством данной процедуры является то, что высокоскоростные потоки могут быть получены последовательным мультиплексированием. Например, можно получить поток STM-16, побайтно объединяя 16 модулей STM-1. В тоже время, STM-16 может быть получен из четырех модулей STM-4 (Рис. 1.10).

Рис. 1.10. Технология мультиплексирования

Размещение данных в цикле STM-1 (mapping)

Как отмечалось выше, вся полезная информационная нагрузка (payload) передается при помощи контейнеров. Рассмотрим возможные типы контейнеров, их внутреннюю структуру и принципы формирования.
Определено следующее соответствие контейнеров скоростям передачи полезной информации (в кбит/с):

Таб.1.5. Типы контейнеров и их скорость передачи.

Контейнер Скорость передачи (кбит/с)
С11 1 544
С12 2 048
С2 6 312
С3 44 736 или 34368
С4 139 264

Этот ряд контейнеров соответствует международным рекомендациям (ITU-T G.709) и объединяет европейскую и североамериканскую схемы системы SDH (SONET). В европейский стандарт не входит контейнер С2.
На рисунке (1.11) показана общая схема размещения сигналов в синхронной цифровой иерархии.

Рис 1.11. Общая схема размещения сигналов в синхронной цифровой иерархии.

Сигнал PDH со скоростью 140 Мбит/с (139 264 кбит/с) при передаче через сеть SDH размещается в контейнерах С-4. Контейнеры С-4 следуют с периодом 125 мкс. Размер контейнера С-4 точно определен и составляет 2340 байт (9 строк по 260 байт) или 18720 бит. В то же время для размещения всех бит сигнала PDH со скоростью 140 Мбит/с требуется контейнер емкость всего 17408 бит (139 264 кбит/с : 8 кГц). Величина 8 кГц соответствует периоду повторения в 125 мкс. Таким образом, в контейнере С-4 остается еще место, которое не было заполнено сигналом PDH. Это пространство содержит:

· биты и байты грубого выравнивания (постоянный стаффинг) для согласования скорости плезиохронного сигнала с более высокой скоростью контейнера;

· биты точного выравнивания, используется положительный стаффинг (добавление бит);

· биты с информацией о наличии точного выравнивании;

· биты “балласта”, которые не имеют функционального назначения.

Для передачи в потоке STM-1 контейнера С-4 к нему добавляется путевой или трактовый заголовок РОН (Path OverHead) размером 9 байт. В результате этой операции образуется так называемый виртуальный контейнер VC-4, имеющий размер 2349 байт (9 строк по 261 байту).
Поскольку циклы STM-1 формируются непрерывно и синхронно по отношению ко всей сети, то для обеспечения передачи плезиохронных сигналов используют гибкую укладку виртуальных контейнеров VC-4 в потоке STM-1. Как будет показано ниже начало VC-4 размещается в одном цикле STM-1, остаток в следующем цикле рис (1.12).

Рис 1.12. Передача в потоке STM-1 контейнера C-4.

Информация о начале виртуального контейнера VC-4, расположении его первого байта содержится в указателе PTR (Pointer). Подробнее указатели рассматриваются ниже.
В цикле STM-1 указатель PTR и Payload вместе называются административным блоком AU-4 рис (1.13).

Рис 1.13. Административный блок AU-4.

Указатель носит название AU-4 указатель (AU-4 PTR). Для получения полной структуры цикла STM-1 к блоку AU-4 добавляются секционные заголовки (SOH). На рисунке (1.14) показана взаимосвязь между составляющими цикла STM-1 при размещении контейнера С-4.

Рис 1.14 Взаимосвязь между составляющими цикла STM-1 при размещении контейнера С-4.

В цикле STM-1 может быть передано 3 контейнера сигналов PDH co cкоростью 34 Мбит/с (34 368 кбит\с). Эти контейнеры носят название С-3. Если посмотреть с позиции скорости, то цикл STM-1 может передавать 4 сигнала со скоростью 34 Мбит/с, однако для совместимости с североамери-канской системой SONET используется только 3 контейнера С-3.
Контейнер С-3 имеет размер 756 байт (9 строк по 84 байта) или 6048 бит. Период следования контейнера С-3 - 125 мкс. Для передачи сигнала PDH со скоростью 34 Мбит/с требуется емкость контейнера всего 4296 бит (34 368 кбит/с : 8 кГц). Контейнер С-3 также предназначается для размещения сигнала DS-3 североамериканской иерархии (44 Мбит/с). Для этого в контейнере С-3 задействуется только 5593 бита (44 736 кбит/с : 8 кГц).
Свободные биты, оставшиеся после размещения полезной нагрузки, используются так же как в контейнере С-4. Только для точного выравнивания используется двухсторонний стаффинг (добавление и вычитание бит). К каждому контейнеру С-3 добавляется заголовок РОН и в результате получается виртуальный контейнер VC-3, имеющий размер 765 байт (9 строк по 85 байт). Существует два способа размещения контейнера VC-3 в цикле STM-1. При первом способе каждому виртуальному контейнеру VC-3 в цикле STM-1, точнее в его указателе PTR, соответствует отдельный 3-х байтный указатель. Совокупность контейнера VC-3 и 3-х байтного указателя образует административный блок АU-3. Указатель называется указатель АU-3 (АU-3 PTR) и показывает начало соответствующего VC-3 в цикле STM-1. В стандартах ETSI, описывающих SDH, этот способ не рекомендуется для применения. Второй способ основан на преобразовании трех блоков VC-3 в один блок VC-4. Для этого к виртуальному контейнеру VC-3 добавляется 3-х байтный указатель, получается трибутарный блок TU-3. При добавлении к нему 6 фиксированных выравнивающих байтов получается группа трибутарного блока TUG-3 рис (1.15).


Рис 1.15. Группа трибутарного блока.

Для передачи по сети SDH, три полученных блока TUG-3 по-байтно мультиплексируются в виртуальный контейнер VC-4. На рисунке (1.16) показан этот процесс.

Рис 1.16. Система передачи сети SDH.

Заметим, что для согласования размеров контейнеров (и, следовательно, для согласования скоростей) в контейнере VC-4 после РОН размещаются две колонки фиксированных байтов выравнивания. На рисунке (1.17) приводится взаимосвязь между составляющими цикла STM-1 при размещении контейнеров С-3, согласно рекомендациям ETSI.

Рис 1.17. взаимосвязь между составляющими цикла STM-1 при размещении контейнеров С-3.

В цикле STM-1 может быть передано 63 контейнера сигналов PDH co скоростью 2 Мбит/с (2 048 кбит\с). Контейнер для передачи этого сигнала называется С-12. Период следования этого контейнера равен 125 мкс.
Емкость контейнера 34 байта (8 строк по 4 байта плюс 1 строка в 2 байта) или 272 бита. Для передачи сигнала PDH 2 Мбит/с требуется 256 бит (2 048 кбит/с: 8 кГц). Свободные биты, оставшиеся после размещения полезной нагрузки, используются так же как в контейнерах С-4 и С-3, применяется двухсторонний стаффинг для точного выравнивания. Виртуальный контей-нер VC-12 образуется добавлением РОН размером в 1 байт в начало контейнера. При этом в 9 строке контейнера становится 3 байта, т.е. вся информация сдвигается назад на 1 байт. Виртуальные контейнеры VC-12 передаются в составе сверхцикла (или мультифрейма), имеющего период в 500 мкс. Отметим, что сверхцикл передается за несколько циклов STM-1. Байты РОН каждого контейнера VC-12 одного сверхцикла составляют суммарный заголовок РОН. На рисунке (1.18) показаны составляющие сверхцикла. Значение байтов РОН (V5, J2, Z6 и Z7) будет пояснено при описании заголовка.

Рис 1.18. Состовляющие сверхцикла.

Трибутарный блок TU-12 образуется за счет добавления байта указателя к контейнеру VC-12. Размер TU-12 равен 36 байт (9 строк по 4 байта). Из сверхцикла контейнеров VC-12 образуется сверхцикл TU-12 путем добавления четырех байт указателя (TU-12 PTR). Значение имеют только первые три байта указателя, четвертый в настоящее время не имеет определенных функций. Подробнее данные указатели будут описаны ниже.
Три блока TU-12 путем по-байтного мультиплексирования образуют группу TUG-2 размером 108 байт (9 строк по 12 байт). Семь групп TUG-2 таким же образом объединяются в группу TUG-3 (рис. 1.19), при этом добавляется одина колонка фиксированных байтов выравнивания.

Рис 1.19. Объединение в TUG-3.

В полученной группе TUG-3 три байта, соответствующие указателю TU-3 PTR, называются NPI (Null Pointer Indicator) - индикатор “пустого” (не имеющего значения) указателя. Из блоков TUG-3 формируется цикл STM-1 рассмотренным выше образом.[5]

 

 

Виды ЦТС


Дата добавления: 2018-02-28; просмотров: 872; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!