Двойственный симплексный метод

Если рассмотреть первую симплексную таблицу с единичным дополнительным базисом, тогда переход к двойственной задаче не обязателен. Это связано с тем, что в столбцах определена исходная задача, а в строках – двойственная. bi являются оценками плана двойственной задачи. Сj являются оценками плана исходной задачи.

Найдем решение двойственной задачи по симплексной таблице. В симплексной таблице прописана исходная задача. Также определим оптимальный план двойственной задачи. Также найдем и оптимальный план исходной задачи. Такой метод принято называть двойственным симплексным методом.

Допустим нужно определить исходную задачу линейного программирования, которая поставлена в общем виде: минимизировать функцию Z=СХ при АХ=A0, Х>0. Значит в двойственной задаче следует максимизировать функцию f=YA0 при YA>С. Пусть определен следующий базис D=(A1, А2,…, Аi,…, Аm), причем в нем хотя бы одна из компонент вектора Х=D-1A0=(x1, x2,…, xi,…, xm) отрицательная. Для всех векторов Aj используется следующее соотношение Zj–Cj >0 (i=1,2,…, n).

Пользуясь теоремой двойственности, Y=СбазD-1 является планом двойственной задачи. Этот план не оптимальный. Потому что оценки оптимального плана двойственной задачи должны быть неотрицательными и выбранный базис X содержит отрицательную компоненту и не является планом исходной задачи, а с другой стороны.

Поэтому, следует исключить из базиса исходной задачи вектор Аi, который соответствует компоненте xi<0. Данный вектор относится к отрицательной оценке, его необходимо включить в базис двойственной задачи.

Просматриваем i-ю строку для выбора вектора, включаемого в базис исходной задачи. Т.е. если строка не имеет xij<0, тогда линейная функция двойственной задачи не ограничена на многограннике решений. Поэтому нет решений исходной задачи.

В противном случае для столбцов, имеющих отрицательные значения, определяем q0j=min(xi/xij)>0. Также находим вектор, который соответствует minq0j(Zj–Cj) при решении исходной задачи на максимум, а также maxq0j(Zj–Cj) при значении исходной задачи на минимум.

Найденный вектор включаем в базис исходной задачи. Направляющей строкой определяется вектор, который надо убрать из базиса исходной задачи.

Допустим, что q0j=min(xi/xij)=0, т.е. xi=0, тогда xij выбирается как разрешающий элемент, но лишь тогда, когда xij>0.

Данный подход к решению задачи не приводит к росту количества отрицательных компонент вектора X. Пока не будет получено Х>0, процесс не прекращается. Определяя оптимальный план двойственной задачи, находим и оптимальный план исходной задачи.

Используя при решении, алгоритм двойственного симплексного метода условие Zj–Cj>0 допускается не учитывать, пока не будут исключены все хi<0.

Обычным симплексным методом определяется оптимальный план. Этот метод обычно используется при условии, что все хi<0. Чтобы перейти к плану исходной, задачи за одну итерацию надо определить q0j=max(xi/xij)>0.

Задачи линейного программирования можно решать двойственным симплексным методом. Системы ограничений в задачах при положительном базисе имеют свободные члены любого знака. Двойственный симплексный метод позволяет значительно уменьшить размеры симплексной таблицы и количество преобразований системы ограничений.


Дата добавления: 2015-12-16; просмотров: 16; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!