Опровержение модели Томсона

Модель атома Томсона

Модель Томсона (иногда называемая «пудинговая модель атома») — модель атома, предложенная в 1904 году Джозефом Джоном Томсоном. После открытия им в 1897 году электрона, Томсон предположил, что отрицательно заряженные «корпускулы» (так Томсон называл электроны, хотя ещё в 1894 году Дж. Дж. Стоуни предложил называть «атомы электричества» электронами) входят в состав атома и предложил модель атома, в котором в облаке положительного заряда, равного размеру атома, содержатся маленькие, отрицательно заряженные «корпускулы», суммарный электрический заряд которых равен заряду положительно заряженного облака, обеспечивая электронейтральность атомов. «Корпускулы» в этой модели распределены внутри положительно заряженного облака с одинаковой по объёму плотностью заряда, подобно изюминкам в тесте пудинга. Отсюда произошёл термин «пудинговая модель атома».

Описание модели

С точки зрения Томсона:

…атомы элементов состоят из нескольких отрицательно заряженных корпускул, заключённых в сферу, имеющую однородно распределённый положительный электрический заряд…

Атом по Томсону состоит из электронов, помещённых в положительно заряженный «суп», компенсирующий отрицательные заряды электронов, подобно отрицательно заряженным «изюминкам» в положительно заряженном «пудинге»(рис. 1). Электроны, как предполагалось, были распределены по всему атому. Было несколько вариантов возможного расположения электронов внутри атома, в частности вращающиеся кольца электронов. В некоторых вариантах модели вместо «супа» предлагалось «облако» положительного заряда.

Согласно этой модели, электроны могли свободно вращаться в капле или облаке такой положительно заряженной субстанции. Их орбиты стабилизировались тем, что, при удалении электрона от центра положительно заряженного облака, он испытывал увеличение силы притяжения, возвращающей его обратно, поскольку внутри его орбиты было больше вещества противоположного заряда, чем снаружи (по закону Гаусса). В модели Томсона электроны могли свободно вращаться по кольцам, которые стабилизировались взаимодействиями между электронами, а спектры объясняли энергетические различия между различными кольцевыми орбитами.

Статья Томсона была опубликована в марте 1904 года в Философском журнале (Philosophical Magazine), ведущем британском научном журнале того времени. Томсон позднее пытался объяснить с помощью своей модели яркие спектральные линии некоторых элементов, но не особо в этом преуспел.

Тем не менее, модель Томсона (также как подобная модель сатурнианских колец для электронов атомов, которую выдвинул тоже в 1904 году Нагаока, по аналогии с моделью колец Сатурна Джеймса Клерка Максвелла) стала ранним предвестником более поздней и более успешной модели Бора, представляющей атом как подобие Солнечной системы.

Опровержение модели Томсона

Модель атома Томсона 1904 года была опровергнута в эксперименте по рассеянию альфа-частиц на золотой фольге в 1909 году, который был проанализированЭрнестом Резерфордом в 1911 году, предположившим, что в атоме есть очень малое ядро, содержащее очень большой положительный заряд (в случае золота, достаточный, чтобы компенсировать заряд около 100 электронов), что привело к созданию планетарной модели атома Резерфорда. Хотя атомный номер золота равен 79, сразу же после появления статьи Резерфорда в 1911 году Антониус Ван ден Брук сделал интуитивное предположение, что атомный номер и является зарядом ядра. Для решения вопроса требовался эксперимент. В 1913 году Генри Мозли экспериментально показал (см. Закон Мозли), что эффективный заряд ядра очень близок к атомному номеру (разность, обнаруженная Мозли, была не больше единицы), причём Мозли ссылался только на работы Ван ден Брука и Резерфорда. Эта работа в итоге привела к созданию в том же году модели атома Бора, похожей на Солнечную систему (но с квантовыми ограничениями), в которой ядро, имеющее положительный заряд, равный атомному номеру, окружено равным числом электронов на орбитальных слоях.

Интересные факты

С этой новой моделью Томсон отказался от своей более ранней гипотезы «туманного атома» (nebular atom), представлявшей атом состоящим из нематериальных вихрей. Теперь по крайней мере часть атома состояла из микроскопических отрицательно заряженных корпускул Томсона, хотя остальная положительно заряженная часть атома по-прежнему оставалась довольно туманной и плохо-определённой.

Модель Томсона сравнивали (но не он сам) с британским десертом, пудингом с изюмом, отсюда пошло название этой модели.

 


3. Строение атома

Сусне теория строения атомов базируется на модели Бора и опытах Резерфорда, но только современные методы исследований позволяют объяснить строение атома более подробно.

3.1. Орбитали

Рассмотрим пространственное расположение электронов в атоме. В соответствии с принципом неопределенности Гейзенберга, положение и скорость электрона не поддаются одновременном определению с определенной точностью. Однако, несмотря на невозможность точного определения положения электрона, можно указать вероятность нахождения электрона в определенном положении в любой момент времени. Часть пространства, в которой очень высока вероятность нахождения электрона, называется орбиталью.

3.2.Квантови числа.

Внимательное рассмотрение атомных спектров показывает, что линии, обусловленные переходом между квантовыми энергетическими уровнями, на самом деле расщеплены на более тонкие, то есть на подоболочки, каждая со своим энергетическим уровнем. Эти электронные подоболочки получили название по виду соответствующих линий в атомном спектре:

s-подоболочки названа по "резкой" (sharp) s-линией

р-подоболочки - по "главной" (principal) р-линией

d-подоболочки - за "диффузной" (diffuse) d-линией

f-подоболочки - за "фундаментальной" (fundamental) f-линией

s-подоболочки состоит из одной s-орбитали.

Р-подоболочки состоит из трех р-орбиталей

d-подоболочки состоит из пяти d-орбиталей

f-подоболочки состоит из семи f-орбиталей

Наличие у электрона особого свойства - спина, также обуславливает расщепление спектра. Таким образом, энергетический уровень электрона в атоме определяется четырьмя характеристиками: оболочкой подоболочки, орбиталью и спином. Каждой из этих характеристик соответствует определенное квантовое число.

Каждый электрон имеет свой индивидуальный набор квантовых чисел, которым он отличается от других электронов данного атома.

Электронная конфигурация элемента - это запись распределения электронов в его атомах по оболочках, подоболочки и орбиталях. Для определения конкретной электронной конфигурации элемента в стационарном состоянии есть три правила:

Принцип заполнения. Электроны в стационарном состоянии атома заполняют орбитали в соответствии повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.

Например:
Водород 1H 1s1

Принцип запрета Паули. На любой орбитали може находиться не более двух электронов и только в том случае, если в них ризнонапрямлени спины.

Например:
1s 2s
Литий 3Li 1s2 2s1

Правило Гунда. Заполнение орбиталей одной подоболочки начинается по одному электрону с параллельными спинами, и только после того, как неспаренных электрона займут все орбитали, может проходить заполнения орбиталей парами электронов с противоположными спинами.

Например:
1s 2s 2p
Азот 7N 1s22s22p3

3.3. Современные представления о строении ядра

1. Ядром называется центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. Все атомные ядра состоят из элементарных частиц: протонов и нейтронов, которые считаются двумя зарядовыми состояниями одной частицы - нуклона. Протон имеет положительный электрический заряд, равный по абсолютной величине заряду электрона. Нейтрон не имеет электрического заряда.

2. Зарядом ядра называется величина Zе, где е - величина заряда протона, Z - порядковый номер химического элемента в периодической системе Менделеева, равный числу протонов в ядре. В настоящее время известны ядра с Z от Z = 1 до Z = 107. Для всех ядер, кроме и некоторых других нейтронодефицитних ядер N и, где N - число нейтронов в ядре. Для легких ядер N /Z»1, для ядер химических элементов, расположенных в конце периодической системы, N /Z» 1,6.

3. Число нуклонов в ядре A = N + Z называется массовым числом. Нуклон (протона и нейтрона) приписывается массовое число, равное единице, электрону - нулевое значение А.

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, при одинаковом А имеют различные Z, называются изобарами. Ядро химического элемента сказывается X, где Х - символ химического элемента.

Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов.

4. Размер ядра характеризуется радиусом ядра, имеет условный смысл из-за размытости границы ядра. Эмпирическая формула

 

для радиуса ядра м, может быть объяснена как пропорциональность объема ядра числу нуклонов в нем.

Плотность ядерного вещества составляет 1017 кг/м3 и постоянна для всех ядер. Она значительно превосходит плотность обычных веществ.

5. Распределение электрического заряда протонов по ядру в общем случае несимметрично. Мерой отклонения этого распределения от сферически симметричного является квадрупольный электрический момент ядра Q. Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра.


Заключение

1. Уподобление атома планетной системе делалось еще в начале XX века. Но эту модель было трудно совместить с моделями электродинамики, и она была оставлена, уступив место модели Томсона. Однако сделанные в 1900-х годах исследования привели к подтверждению планетарной модели.

2. Резерфорд предложил свою схему строения атома: в центре атома находится положительное ядро, вокруг которого по разным орбит вращаются отрицательные электроны. Центростремительные силы, возникающие при их вращении удерживают их на своих орбиталях и не дают им отделиться. Эта модель атома легко объясняет явление отклонения? - Частиц, если известно, что размеры ядра и электронов очень малы по сравнению с размерами всего атома.

3. Теория Бора оказала огромный вклад в развитие современного представления о строении атома, подойдя, с одной стороны, к раскрытию законов спектроскопии и объяснению механизма излучения, а с другой - к выяснению структуры отдельных атомов и установлению связи между ними. Однако оставалось еще много явлений в этой области, объяснить которые теория Бора не могла.

... В далеком прошлом философы Древней Греции предполагали, что вся материя едина, но приобретает те или иные свойства в зависимости от ее «сущности». Благодаря великим ученым прошлого века, мы приближаемся к истинному пониманию строения материи, но из чего в действительности она состоит полностью еще неизвестно никому.


Литература

1.М.Л. Глинки. Общая физика. - М.: Высшая школа, 1982. - 608с.

2.М.А. Тамаров. Неорганическая физика. - М.: Медицина, 1974. - 480 с.

3.В.В. Григорьева и др.. Общая физика. - М.: Высшая школа, 1991. - 431 с.

4.Ахметов Н.С. Неорганическая физика. - 2-е изд. - М.: Высшая школа, 1975. - 670с.

5.Кемплбел Дж. Современная общая физика: В3-х т.-М.: Мир, 1991.

 


Дата добавления: 2015-12-18; просмотров: 25; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!