Специфические названия микросхем



 

Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor) — Intel 4004. На базе усовершенствованных микропроцессоров 8088 и 8086 фирма IBM выпустила свои известные персональные компьютеры).

 

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

 

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами.

 

 

22. Рассмотрим цепь с ненулевыми начальными условиями. Допустим, что в момент времени t=0 участок R, L, C подключается к источнику ЭДС e(t) (рис. 8.4). Требуется найти изображение тока на этом участке.

 

По второму закону Кирхгофа для имеем (рис. 8.4б):

 

Рис. 8.4. Включение источника ЭДС в цепь с ненулевыми начальными условиями ((а) - цепь до коммутации; б)- цепь после коммутации).

 

Этому выражению соответствует уравнение для изображений:

 

здесь, – начальный ток в индуктивности и начальное напряжение на емкости.

 

Решив полученное уравнение относительно , имеем:

 

Выражение

 

называется операторным сопротивлением электрической цепи.

 

Выражение

 

называется законом Ома в операторной форме.

 

Первый закон Кирхгофа в операторной форме:

 

Второй закон Кирхгофа в операторной форме:

 

 

где - операторное сопротивление ветви.

 

Последовательность расчетов в операторном методе

 

Расчет состоит из двух этапов:

Составление изображения искомой функции времени.

Переход из изображения к искомой функции времени.

 

23. Модуляция колебаний

медленное по сравнению с периодом колебаний изменение амплитуды, частоты или фазы колебаний по определённому закону. Соответственно различаются амплитудная модуляция, частотная модуляция и фазовая модуляция (рис. 1). При любом способе М. к. скорость изменения амплитуды, частоты или фазы должна быть достаточно малой, чтобы за период колебания модулируемый параметр почти не изменился.

М. к. применяется для передачи информации с помощью электромагнитных волн радио- или оптических диапазонов. Переносчиком сигнала в этом случае являются синусоидальные электрические колебания высокой частоты ω (несущая частота). Амплитуда, частота, или фаза этих колебаний, а в случае света и поляризация, модулируются передаваемым сигналом (см. Модуляция света).

В простейшем случае модуляции амплитуды А синусоидальным сигналом модулированное колебание, изображенное на рис. 2, может быть записано в виде:

х = А0 (1 + m sin Ω t) sin (ω t + φ). (1)

Здесь A0 и ω — амплитуда и частота исходного колебания, Ω — частота модуляции, а величина m, называется глубиной модуляции, характеризует степень изменения амплитуды:

 

Частота модуляции Ω характеризует скорость изменения амплитуды колебаний. Эта частота должна быть во много раз меньше, чем несущая частота ω. Модулированное колебание уже не является синусоидальным. Амплитудно-модулированное колебание представляет собой сумму трёх синусоидальных колебаний с частотами ω, ω + Ω и ω — Ω. Колебание частоты ω называется (в радиотехнике) несущим. Его амплитуда равна амплитуде исходного колебания А0. Две остальные частоты называются боковыми частотами, или спутниками. Амплитуда каждого спутника равна mА0/2.

Т. о., любая передающая радиостанция, работающая в режиме амплитудной модуляции, излучает не одну частоту, а целый набор (спектр) частот. В простейшем случае М. к. синусоидальным сигналом этот спектр содержит лишь три составляющие — несущую и две боковые. Если же модулирующий сигнал не синусоидальный, а более сложный, то вместо двух боковых частот в модулированном колебании будут две боковые полосы, частотный состав которых определяется частотным составом модулирующего сигнала. Поэтому каждая передающая станция занимает в эфире определённый частотный интервал. Во избежание помех несущие частоты различных станций должны отстоять друг от друга на расстоянии, большем, чем сумма боковых полос. Ширина боковой полосы зависит от характера передаваемого сигнала: для радиовещания (См. Радиовещание) — 10 кгц, для телевидения (См. Телевидение) — 6 Мгц. Исходя из этих величин, выбирают интервал между несущими частотами различных станций. Для получения амплитудно-модулированного колебания колебание несущей частоты ω и модулирующий сигнал частоты Ω подают на специальное устройство — Модулятор.

В случае частотной модуляции синусоидальным сигналом частота колебаний меняется по закону:

ω = ω0 + Δω cos Ω t, (3)

где cos Ω t — модулирующий сигнал, Δω — т. н. девиация частоты. При частотной модуляции полоса частот модулированного колебания зависит от величины β = Δω/Ω, называемой индексом частотной модуляции. При β << 1 справедливо приближённое соотношение:

 

х ≈ А0 (sin ω t + β sin Ω t cos ω t). (4)

В этом случае частотно-модулированное колебание, так же как и амплитудно-модулированное, состоит из несущей частоты ω и двух спутников с частотами ω + Ω и ω — Ω. Поэтому при малых β полосы частот, занимаемые амплитудно-модулированным и частотно-модулированным сигналами, одинаковы. При больших индексах β спектр боковых частот значительно увеличивается. Кроме колебаний с частотами ω ± Ω, появляются колебания, частоты которых равны ω ± 2 Ω, ω ± 3 Ω и т. д. Полная ширина полосы частот, занимаемая частотно-модулированным колебанием с девиацией Δω и частотой модуляции Ω (с точностью, достаточной для практических целей), может считаться равной 2 Δω + 2 Ω. Эта полоса всегда шире, чем при амплитудной модуляции.

Преимуществом частотной модуляции перед амплитудной в технике связи является большая помехоустойчивость. Это качество частотной модуляции проявляется при β >> 1, т. е. когда полоса частот, занимаемая частотно-модулированным сигналом, во много раз больше 2 Ω. Поэтому частотно-модулированные колебания применяются для высококачественной передачи сигналов в диапазоне ультракоротких волн (УKB), где на каждую радиостанцию выделена полоса частот, в 15—20 раз большая, чем в диапазоне длинных, средних и коротких волн, на которых работают радиостанции с амплитудной модуляцией. Частотная модуляция применяется также для передачи звукового сопровождения телевизионных программ. Частотно-модулированные колебания могут быть получены изменением частоты задающего генератора (См. Задающий генератор) (см. Радиопередатчик).

В случае фазовой модуляции модулированное колебание имеет вид:

х = А0 sin (ω0 t + Δφ cos Ω t). (5)

Если модулирующий сигнал синусоидальный, то форма модулированных колебаний и их спектральный состав для частотной и фазовой модуляции одинаковы. В случае несинусоидального модулирующего сигнала это различие четко выражено.

В многоканальных системах связи в качестве переносчика информации используется не гармоническое колебание, а периодическая последовательность радиоимпульсов, каждый из которых представляет собой цуг колебаний высокой частоты (рис. 3). Периодическая последовательность таких импульсов определяется четырьмя основными параметрами: амплитудой, частотой следования, длительностью (шириной) и фазой. В соответствии с этим возможны четыре типа импульсной модуляции: амплитудно-импульсная, частотно-импульсная, широтно-импульсная, фазово-импульсная (рис. 4). Импульсная модуляция обладает повышенной помехоустойчивостью по сравнению с модуляцией непрерывной синусоидальной несущей, зато полоса частот, занимаемая передающей радиостанцией с импульсной модуляцией, во много раз шире, чем при амплитудной модуляции (см. Импульсная модуляция, Импульсная радиосвязь).

 

 

24. Диод Ганна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, а на собственных объёмных свойствах полупроводника.

 

Традиционно диод Ганна состоит из слоя арсенида галлия толщиной от единиц до сотен микрометров с омическими контактами с обеих сторон. В этом материале в зоне проводимости имеются два минимума энергии, которым соответствуют два состояния электронов — «тяжёлые» и «лёгкие». В связи с этим с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения.

 

Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, равномерное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения. Такой движущийся двойной слой зарядов с высокой напряжённостью электрического поля внутри получил название домена сильного поля, а напряжение, при котором он возникает — порогового.

 

В момент зарождения домена ток в диоде максимален. По мере формирования домена он уменьшается и достигает своего минимума по окончании формирования. Достигая анода, домен разрушается, и ток снова возрастает. Но едва он достигнет максимума, у катода формируется новый домен. Частота, с которой этот процесс повторяется, обратно пропорциональна толщине слоя полупроводника и называется пролетной частотой.

 

При помещении диода Ганна в резонатор возможны другие режимы генерации, при которых частота колебаний может быть сделана как ниже, так и выше пролетной частоты. Эффективность такого генератора относительно высока, но максимальная мощность не превышает 200—300мВт.

 

Наряду с арсенидом галлия для изготовления диодов Ганна также используется фосфид индия (до 170 ГГц) и нитрид галлия (GaN) на котором и была достигнута наиболее высокая частота колебаний в диодах Ганна — 3 ТГц.

 

Туннельный диод

 

Устройство

 

Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области.[1] При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона[2], вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.

 


Дата добавления: 2016-01-05; просмотров: 22; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!