Метод внутреннего проектирования в построении плоских сечений многогранников.

Метод следов в построении плоских сечений многогранников.



Определение.

Прямая, по которой секущая плоскость α пересекает плоскость основания многогранника, называется следом плоскости α в плоскости этого основания.

Из определения следа получаем: в каж­дой его точке пересекаются прямые, одна из которых лежит в секущей плоскости, другая - в плоскости основания. Имен­но это свойство следа используют при по­строении плоских сечений многогранников методом следов. Причем в секущей плоскости, удобно использовать такие прямые, ко­торые пересекают ребра многогранника.


Сначала секущую плоскость зададим ее следом в плоскости основания призмы (пирамиды) и точкой, принадлежащей по­верхности призмы (пирамиды).

Задача 1. Построить сечение призмы АВСВЕА1В1С1D1Е1 плоскостью α, которая задана следом l в плоскости АВС основа­ния призмы и точкой М, принадлежащей ребру DD1.

Решение. Анализ. Предположим, что пятиугольник MNPQR — искомое сечение (рис. 9). Для построения этого плоского пятиугольника достаточно построить его вершины N, P, Q, R (точка М дана) — точки пересечения секущей плоскости α с ребрами соответственно СС1, ВB1, АА1, ЕЕ1 данной призмы.

Е1 D1

Рис. 9

Для построения точки N =α ∩ СС1 до­статочно построить прямую пересечения секущей плоскости α с плоскостью грани СDD1C1. Для этого, в свою очередь, доста­точно построить в плоскости этой грани еще одну точку, принадлежащую секущей плоскости α. Как построить такую точку?

Так как прямая l лежит в плоскости осно­вания призмы, то она может пересекать пло­скость грани СDD1C1 лишь в точке, которая принадлежит прямой CD = (CDD1) ∩ (АВС), т.е. точка X = l ∩ СD = l ∩ (CDD1) принад­лежит секущей плоскости α. Таким образом, для построения точки N = α ∩ СС1 достаточно построить точку X = l ∩ СD.


Аналогично, для построения точек Р= α ∩ ВВ1, Q = α ∩ АА1 и R = α ∩ ЕЕ1 достаточно построить соответственно точ­ки: У = l ∩ ВС, Z = 1 ∩ АВ и Т =1 ∩ АЕ. Отсюда

Построение. Строим (рис. 10):


1. X = l ∩ СD (рис. 10, б);

2. N = МХ ∩ СС1 (рис. 10, в);

3. У = l ∩ ВС (рис. 10, г);

4. Р = NY ∩ ВВ1 (рис. 10, д);

5. Z = 1 ∩ АВ (рис. 10, е);

6. Q= РZ ∩ АА1 (рис. 10, ж);

7. T= l ∩ АЕ (рис. 10, з);

8. R= QT ∩ ЕЕ1 (рис. 10, и).


 

Пятиугольник MNPQR — искомое сече­ние (рис. 10, к).

Доказательство. Так как прямая l - след секущей плоскости α, то точки X = l ∩ СD, Y = l ∩ ВС, Z = 1 ∩ АВ и T= l ∩ АЕ принадлежат этой плоскости.

Поэтому имеем:

М є α, X є α => МХ є α, тогда МХ ∩ СС1 = N є α, значит, N = α ∩ СС1;

N є α, Y є α => NY є α, тогда NY ∩ ВВ1= Р є α, значит, Р = α ∩ ВВ1;

Р є α, Z є α => РZ є α, тогда PZ ∩ AА1 = Q є α, значит, Q = α ∩ АA1;

Q є α, T є α => QТ є α, тогда QТ ∩ EЕ1 =R є α, значит, R = α ∩ ЕЕ1.

 

Следовательно, MNPQR - искомое се­чение.

 

Исследование. След l секущей плоско­сти α не пересекает основание призмы, а точка М секущей плоскости принадле­жит боковому ребру DD1 призмы. Поэто­му секущая плоскость α не параллельна боковым ребрам. Следовательно, точкиN, Р, Q и R пересечения этой плоскости с боковыми ребрами призмы (или продолжениями этих ребер) всегда существуют. А поскольку, кроме того, точка М не при­надлежит следу l, то определяемая ими плоскость α единственна. Это означает, что задача имеет (всегда!) единственное ре­шение. Рис. 10



Задача 2. Постройте сечение пятиуголь­ной пирамиды PABCDE плоскостью, ко­торая задана следом l и внутренней точ­кой К ребра РЕ.


Решение. Схематически построение искомого сечения можно изобразить так (рис. 11): T1 → Q → Т2 → R → Т3 → М → Т4 → N.

Пятиугольник MNKQR — искомое се­чение.

«Цепочка» последовательности построе­ния вершин сечения такова:

1. Т1= l ∩ АЕ; 2. Q = Т1К ∩ РА;

3. Т2 = l ∩ АВ; 4. R = Т2Q ∩ РВ;

5. Т3 = l ∩ ВС; 6. М - T3R ∩ РС;

7. Т4 = l ∩ СD; 8. N = Т4М ∩ РD.

Однако секущая плоскость часто за­дается тремя точками, принадлежащими многограннику.

В таком случае для построения искомо­го сечения методом следов сначала строят след секущей плоскости в плоскости осно­вания данного многогранника.

Рис. 11

 

Задача 3. Постройте сечение призмы АВСDЕА1В1С1D1Е1 плоскостью α= (МРR), где М, Р и R являются внутренними точками соответственно ребер АА1, СС1 и ЕЕ1 (рис. 12).

Решение. Построим след секущей плоскости α в плоскости основания АВС данной призмы. Для построения этого следа достаточно построить две любые его точки. Такими точками являются точки пересечения плоскости основания данного многогранника с прямыми, лежащими в секущей плоскости.

 

 

 

 

Е1 D1

 

Рис. 12

 

Прямая МR лежит в секущей плоско­сти α = (МРR),а прямая АЕ - в плоско­сти АВС основания данной призмы, при этом эти прямые лежат в одной плоскости (плоскости грани АЕЕ1А1) и пересекают­ся. Точка T1 = МR ∩ АЕ является одной из точек следа плоскости α в плоскости основания призмы. Аналогично, точка Т2 = РR ∩ СЕ является второй точкой это­го следа. Тогда прямая Т1Т2 = l - след секущей плоскости в плоскости основания призмы. Далее строим точки: 1) Т3 = l ∩ АВ; 2) N = Т3М ∩ ВВ1; 3) Т4 = l ∩ВD; 4) Q = Т4N ∩ DD1. Со­единив отрезками последовательно точки М, N, Р, Q и R, получаем пятиуголь­ник MNPQR - искомое сечение данной призмы, выделив его невидимые стороны штриховыми линиями.

Аналогично строится сечение пирамиды плоскостью, заданной тремя точками.

Метод внутреннего проектирования в построении плоских сечений многогранников.

 

В некоторых учебных пособиях метод построения сечений многогранников, ко­торый мы сейчас будем рассматривать, называют методом внутреннего проекти­рования или методом соответствий, или методом диагональных сечений. Мы при­мем первое название.

Задача 1. Постройте сечение пирами­ды PABCDE плоскостью α = (МFR), если точки М, F и R являются внутренними точками ребер соответственно РА, РС и РЕ (рис. 26, а).

Решение. Плоскость основания пирами­ды обозначим β. Для построения искомого сечения построим точки пересечения секу­щей плоскости α с ребрами пирамиды.

Построим точку пересечения секущей плоскости с ребром РD данной пира­миды.

Плоскости APD и CPE пересекают плоскость β по прямым соответсвено АD и СЕ, которые пересекаются в некоторой точке К (рис. 26, в). Прямая РК=(АРD) ∩(СРЕ) пересекает прямую FR є α в некоторой точке К1: К1 = РК ∩ FR (рис. 26, г), при этом К1 є α. Тогда: М є α, К1 є α => прямая МK є а. Поэ­тому точка Q = МК1 ∩ РD (рис. 26, д) есть точка пересечения ребра РD и секущей плоскости: Q =α ∩ PD. Точка Q— вер­шина искомого сечения. Аналогично строим точку пересечения плоскости α и ребра РВ. Плоскости ВРЕ и АРD пересекают плоскость β по пря­мым соответственно ВЕ и АD, которые пересекаются в точке Н (рис. 26, е). Прямая РН = (ВРЕ) ∩ (АРD) пересекает прямую МQ в точке Н1 (рис. 26, ж). Тогда прямая RН1 пересекает ребро РВ в точке N = α ∩ РВ — вершине сечения (рис. 26, з).

Таким образом, последовательность «шагов» построения искомого сечения та­кова:

1. К = АD ∩ ЕС; 2. К1 = РК ∩ RF;

3. Q = МК1 ∩ РD; 4. H = BE ∩ АD;

5. Н1 = РН ∩ МQ; 6. N = RН1 ∩ РВ.

Пятиугольник MNFQR — искомое се­чение (рис. 26, и).

Динамика построения этого сечения пи­рамиды проиллюстрирована на рис. 26.


 





 


 





Е

E

В

Е

 


 


Задача 2. Постройте сечение призмы АВСDEА1В1С1D1Е1, плоскостью α, задан­ной точками М є ВВ1, Р є DD1, Q є ЕЕ1 (рис. 27).

Решение. Обозначим: β — плоскость нижнего основания призмы. Для построения искомого сечения построим точки пересече­ния плоскости α = (МРQ) с ребрами призмы.

Построим точку пересечения плоскости α с ребром АА1.

 

Плоскости А1АD и ВЕЕ1 пересекают плоскость β по прямым соответственно АD и ВЕ, которые пересекаются в неко­торой точке К. Так как плоскости А1АD и ВЕЕ1 проходят через параллельные ре­бра АА1 и ВВ1 призмы и имеют общую точку К, то прямая КК1 их пересечения проходит через точку К и параллельна ре­бру ВВ1. Точку пересечения этой прямой с прямой QМ обозначим: К1= КК1 ∩ QМ, КК1 ║ ВВ1. Так как QM є α, то К1 є α.

Е1

 

 

Рис. 27

 

Получили: Р є α, К1 є α => прямая РК1 є α, при этом РК1 ∩ АА1 = R. Точка R служит точкой пересечения плоскости α и ребра АА1 (R = α ∩ АА1), поэтому является вершиной искомого сечения.

Аналогично строим точку N = α ∩ СС1.

Таким образом, последовательность «шагов» построения искомого сечения та­кова:

1. К = АD ∩ ВЕ;

2. К1 = КК1 ∩ MQ, КК1 || ВВ1;

3. R = РК1 ∩ АА1;

4. Н = ЕС ∩АD;

5. H1 – HH1 ∩ РR, НН1 || СС1;

6. N = QН1 ∩ СС1.

Пятиугольник MNPQR— искомое сечение.



СПИСОК ЛИТЕРАТУРЫ

 

1. Потоскуев Е.В. Изображение простран­ственных фигур на плоскости. Построение се­чений многогранников. Учебное пособие для студентов физико-математического факультета педвуза. — Тольятти: ТГУ, 2004.

 


Дата добавления: 2016-01-04; просмотров: 113; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!