Конструктивно-силовые схемы оперения.



Тема 7. Оперение

 

Литература:

Гребеньков О.А. Конструкция самолетов. М.: Машиностроение, 1984.

Житомирський Г.И. Конструкция самолетов. М.: Машиностроение, 1992.

 

Общие сведения.

 

Оперением называются аэродинамические поверхности, обеспечивающие устойчивость, управляемость и балансировку самолета в полете. Оно состоит из горизонтального и вертикального оперения. К оперению обычно относят и элероны - органы поперечной управляемости и балансировки, которые рассматриваются в разделе «Крыло».

Основные требования к оперению:

-обеспечение высокой эффективности при минимальном лобовом сопротивлении и наименьшей массе конструкции,

-возможно меньшее затенение оперения другими частями самолета - крылом, фюзеляжем, гондолами двигателей, а также одной части оперения другой,

-отсутствие вибраций и колебаний типа флаттера и бафтинга,

Горизонтальное оперение (ГО) предназначено для обеспечения продольной, а вертикальное оперение (ВО) - путевой устойчивости и управляемости самолета. Эти задачи решаются образованием на оперении переменных по величине и направлению аэродинамических сил, необходимых для обеспечения заданных режимов полета.

Оперения нормальной и Т-образной схем, состоящего из неподвижного или переставного (с изменяемым в полете углом установки) стабилизатора с рулями высоты (РВ) и неподвижного киля с рулем направления (РН) характерны для большинства современных самолетов с дозвуковой скоростью полета. На самолетах со сверхзвуковой скоростью полета из-за недостаточной эффективности РВ при полете на сверхзвуковой скорости применяют управляемый стабилизатор.

Переход на управляемый стабилизатор позволяет резко увеличить эффективность ГО, особенно на сверхзвуковых скоростях (эффективность оперения определяется величиной приращения его подъемной силы при изменении угла атаки на один градус). Значительно реже по той же причине (из-за снижения эффективности РН при сверхзвуковом полете) применяется цельноповоротное ВО, так как остающейся при этом эффективности РН в большинстве случаев еще достаточно для обеспечения нормальной управляемости самолетом.

Для повышения эффективности ВО применяются подфюзеляжные кили, включающие в работу фюзеляж в районе ВО. Применение таких килей снижает влияние на путевую устойчивость затенения ВО крылом и фюзеляжем на больших углах атаки.

Горизонтальное оперение (ГО): Обеспечивает продольную устойчивость, управляемость и балансировку. Горизонтальное оперение состоит из неподвижной поверхности - стабилизатора и шарнирно подвешенного к нему руля высоты. У самолетов нормальной аэродинамической схемы горизонтальное оперение устанавливается в хвостовой части самолета.

В схеме «утка» оперение располагается в носовой части самолета перед крылом. Возможна комбинированная схема, когда у самолета нормальной схемы ставится дополнительное переднее оперение - схема с ПГО (переднее горизонтальное оперение), позволяющая использовать преимущества обеих указанных схем. Схемы «бесхвостка», «летающее крыло» горизонтального оперения не имеют.

Неподвижный стабилизатор обычно имеет фиксированный угол установки относительно продольной оси самолета. Иногда предусматривается регулировка этого угла на земле.

Такой стабилизатор называется переставным.

На тяжелых самолетах для повышения эффективности продольного управления угол установки стабилизатора с помощью дополнительного привода может изменяться в полете, обычно на взлете и посадке, а также для балансировки самолета на заданном режиме полета. Такой стабилизатор называется подвижным.

На сверхзвуковых скоростях полета эффективность руля высоты резко падает. Поэтому у сверхзвуковых самолетов вместо классической схемы ГО с рулем высоты применяется управляемый стабилизатор, угол установки которого регулируется летчиком с помощью командного рычага продольного управления. Руль высоты в этом случае отсутствует.

Вертикальное оперение (ВО): Обеспечивает самолету путевую устойчивость, управляемость и балансировку относительно вертикальной оси. Оно состоит из неподвижной поверхности - киля и шарнирно подвешенного к нему руля направления.

Цельноповоротное ВО применяется весьма редко. Эффективность ВО можно повысить путем установки форкиля - передний наплыв в корневой части киля и дополнительным подфюзеляжным гребнем.

 

Формы оперения.

 

Формы поверхностей оперения определяются теми же параметрами, что и формы крыла - удлинением, сужением, углом стреловидности, аэродинамическим профилем и его относительной толщиной. Как и у крыла различают трапециевидное, овальное, стреловидное и треугольное оперение.

Схема оперения определяется числом его поверхностей и их взаимным расположением. Наиболее распространены следующие схемы:

схема с центральным расположением вертикального оперения в плоскости симметрии самолета; горизонтальное оперение в этом случае может располагаться как на фюзеляже, так и на киле на любом удалении от оси самолета. Схему с расположением ГО на конце киля принято называть Т-образным оперением,

схема с разнесенным вертикальным оперением; две его поверхности могут крепиться по бокам фюзеляжа или на концах ГО; при двухбалочной схеме фюзеляжа поверхности ВО устанавливаются на концах фюзеляжных балок; на самолетах типа «утка», «бесхвостка», «летающее крыло» разнесенное ВО устанавливается на концах крыла или в средней его части,

V-образное оперение, состоящее из двух наклонных поверхностей, выполняющих функции и горизонтального и вертикального оперения. Из-за малой эффективности и сложности управления такое оперение широкого применения не получило.

 

Требуемая эффективность оперения обеспечивается правильным выбором форм и расположения его поверхностей, а также численных значений параметров этих поверхностей. Чтобы избежать затенения органы оперения не должны попадать в спутную струю крыла, гондол и других агрегатов самолета.

Более позднее наступление волнового кризиса на оперении достигается увеличенными по сравнению с крылом углами стреловидности и меньшими относительными толщинами. Избежать флаттера и бафтинга можно известными мерами устранения этих явлений аэроупругости.

Эффективность горизонтального и вертикального оперения определяется их коэффициентами статических моментов Аго и Аво.

 

Нагрузки оперения.

 

 На органы оперения в полете действуют распределенные аэродинамические силы, величина и закон распределения которых задаются нормами прочности или определяются продувками. Массовыми инерционными силами оперения ввиду их малости обычно пренебрегают. Рассматривая работу элементов оперения при восприятии внешних нагрузок, по аналогии с крылом следует различать общую силовую работу агрегатов оперения как балок, в сечениях которых действуют перерезывающие силы, изгибающие и крутящие моменты, и работу местную от воздушной нагрузки, приходящейся на каждый участок обшивки с подкрепляющими ее элементами.

 

 

Конструктивно-силовые схемы оперения.

 

Различные агрегаты оперения отличаются друг от друга назначением и способами закрепления, что вносит свои особенности в силовую работу и влияет на выбор их конструктивно-силовых схем. Рассмотрим отдельно особенности устройства и силовой работы основных агрегатов оперения (стабилизатора, киля, управляемого стабилизатора, руля и элерона).

 

Стабилизаторы и кили.

 

Имеют полную аналогию с крылом как по составу и конструкции основных элементов - лонжеронов, продольных стенок, стрингеров, нервюр, так и по типу силовых схем. Для стабилизаторов вполне успешно используются лонжеронная, кессонная и моноблочная схемы, а для килей последняя схема применяется реже из-за определенных конструктивных трудностей при передаче изгибающего момента с киля на фюзеляж. Контурный стык силовых панелей киля с фюзеляжем в этом случае требует установки большого числа силовых шпангоутов или установки на фюзеляже в плоскости силовых панелей киля мощных вертикальных балок, опирающихся на меньшее число силовых шпангоутов фюзеляжа. У стабилизаторов можно избежать передачи изгибающих моментов на фюзеляж, если лонжероны или силовые панели левой и правой его поверхностей связать между собой по кратчайшему пути в центральной его части. Для стреловидного стабилизатора это требует перелома оси продольных элементов по борту фюзеляжа и установки двух усиленных бортовых нервюр. Если продольные элементы такого стабилизатора без перелома осей доходят до плоскости симметрии самолета, то кроме бортовых силовых нервюр, передающих крутящий момент, потребуется еще одна силовая нервюра в плоскости симметрии самолета.

 

Управляемый стабилизатор.

 

На виде в плане имеет стреловидную или треугольную форму. Ось вращения управляемого стабилизатора может быть перпендикулярной к плоскости симметрии самолета или располагаться под углом к ней.

Положение оси вращения выбирается так, чтобы усилия от шарнирного момента на до- и сверхзвуковых скоростях полета были бы минимальными. Крепление управляемого стабилизатора к фюзеляжу выполняется с помощью вала и двух подшипников.

Возможны две схемы крепления вала:

-вал жестко закреплен на стабилизаторе, а подшипники крепятся на фюзеляже,

-вал (ось) закреплен неподвижно на фюзеляже, а подшипники установлены на стабилизаторе.

В первом случае крепление вала к стабилизатору должно обеспечить передачу на вал перерезывающей силы, изгибающего момента и момента кручения, если качалка управления закреплена на валу.

В некоторых случаях качалка управления крепится на корневой усиленной нервюре, которая собирает весь крутящий момент с замкнутого контура стабилизатора. В этом случае крутящий момент на вал не передается. При такой схеме крепления обычно используется лонжеронная схема стабилизатора, т.к. при кессонной схеме передача изгибающего момента с силовых панелей на вал вызывает конструктивные трудности.

В случае закрепления вала на фюзеляже подшипники крепятся на усиленных нервюрах стабилизатора, связанных с его продольными стенками.

На внешний подшипник передается вся перерезывающая сила консоли, а изгибающий момент парой сил передается на оба подшипника. Таким образом, на внешнем подшипнике происходит суммирование двух указанных усилий (R4).

В схеме с закреплением вала на фюзеляже достаточно просто обеспечивается передача изгибающего момента и при кессонной или моноблочной конструкциях стабилизатора. В этом случае силовые панели спереди и сзади опираются на продольные стенки, которые у корня сходятся к внутреннему бортовому подшипнику. Соответственно ширина силовых панелей и усилия в них от изгиба стабилизатора меняются от максимальной величины над внешним подшипником до нуля над внутренним подшипником. В результате изгибающий момент кессона стабилизатора уравновешивается реакциями подшипников. Качалка управления в таком стабилизаторе обычно устанавливается на корневой усиленной нервюре. Подобный принцип передачи изгибающего момента можно использовать и при кессонной схеме стабилизатора с подвижным валом. В этом случае внешний конец вала должен опираться на силовую нервюру, связанную со стенками кессона.

 

Рули и элероны.

 

Ввиду полной идентичности конструкции и силовой работы рулей и элеронов в дальнейшем для краткости речь будет идти только о рулях, хотя все сказанное будет полностью относится и к элеронам.

Основным силовым элементом руля, работающим на изгиб и воспринимающим практически всю перерезывающую силу, является лонжерон, который опирается на шарнирные опоры узлов подвески.

Основная нагрузка рулей - воздушная аэродинамическая, возникающая при балансировке, маневрировании самолета или при полете в неспокойном воздухе. Воспринимая эту нагрузку, лонжерон руля работает как неразрезная многоопорная балка. Особенность его работы заключается в том, что опоры руля закреплены на упругих конструкциях, деформации которых под нагрузкой существенно влияют на силовую работу лонжерона руля.

Восприятие крутящего момента руля обеспечивается замкнутым контуром обшивки, который в местах выреза под кронштейны крепления замыкается стенкой лонжерона. Максимальный крутящий момент действует в сечении кабанчика управления, к которому подходит тяга управления. Местом расположения кабанчика (тяги управления) по размаху руля можно существенно влиять на деформации руля при кручении.

 

Флапероны.

 

Закрылки и элероны вместе занимают заднюю кромку крыла. Для улучшения взлётно-посадочных характеристик закрылки должны быть как можно больше, а для получения хороших угловых скоростей крена элероны должны быть как можно больше. Поскольку пространство ограничено, то одно из решений – это симметрично опускать оба элерона в помощь закрылкам. Такие элероны называются флапероны или зависающие элероны. Управление по крену осуществляется дифференциальным отклонением элеронов из опущенного («зависшего») положения.

Другое решение – использовать подвижные поверхности закрылков, как по прямому назначению, так и для поперечного управления.

 


Дата добавления: 2022-11-11; просмотров: 212; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!