Видимая и абсолютная звёздные величины. Светимость звёзд



После того как астрономы получили возможность определять расстояния до звёзд, выяснилось, что звёзды, находящиеся на одинаковом расстоянии, могут отличаться по видимой яркости (т. е. по блеску). Стало очевидно, что звёзды имеют различную светимость. Солнце кажется самым ярким объектом на небе только потому, что оно находится гораздо ближе всех остальных звёзд.

Светимостью называется полная энергия, излучаемая звездой в единицу времени.

Она выражается в абсолютных единицах (ваттах) или в единицах светимости Солнца.

В астрономии принято сравнивать звёзды по светимости, рассчитывая их блеск (звёздную величину) для одного и того же стандартного расстояния — 10 пк.

Видимая звёздная величина, которую имела бы звезда, если бы находилась от нас на расстоянии D0 = 10 пк, получила название абсолютной звёздной величины M.

Рассмотрим, как можно определить абсолютную звёздную величину M, зная расстояние до звезды D (или параллакс — p) и её видимую звёздную величину m. Напомним, что блеск двух источников, звёздные величины которых отличаются на единицу, отличается в 2,512 раза. Для звёзд, звёздные величины которых равны m1 и m2 соответственно, отношение их блесков I1 и I2 выражается соотношением:

Для видимой и абсолютной звёздных величин одной и той же звезды отношение блесков будет выглядеть так:

I : I0 = 2,512Mm,

где I0 — блеск этой звезды, если бы она находилась на расстоянии D0 = 10 пк.

В то же время известно, что блеск звезды меняется обратно пропорционально квадрату расстояния до неё. Поэтому

 Следовательно, .

Логарифмируя это выражение, находим

0,4(Mm) = lg 102 – lg D2,

ИлиM = m + 5 – 5 lg D, илиM = m + 5 + lg p.

Абсолютная звёздная величина Солнца M = 5m. Иначе говоря, с расстояния 10 пк наше Солнце выглядело бы как звезда пятой звёздной величины.

Зная абсолютную звёздную величину звезды M, легко вычислить её светимость L. Считая светимость Солнца L = 1, получаем:

L = 2,5125 – M,илиlg L = 0,4(5 – M).

По светимости (мощности излучения) звёзды значительно отличаются друг от друга: некоторые излучают энергию в сотни тысяч раз больше, чем Солнце, другие — в десятки тысяч раз меньше. Абсолютные звёздные величины звёзд наиболее высокой светимости (гигантов и сверхгигантов) достигают M = –9m, а звёзды-карлики, обладающие наименьшей светимостью, имеют абсолютную звёздную величину M = +17m.

 

Спектры, цвет и температура звёзд

Всю информацию о звёздах можно получить только на основе исследования приходящего от них излучения. Наблюдая звёзды, можно заметить, что они имеют различный цвет. Хорошо известно, что цвет любого нагретого тела, в частности звезды, зависит от его температуры. Более полное представление об этой зависимости даёт изучение звёздных спектров. Для большинства звёзд это спектры поглощения, в которых на фоне непрерывного спектра наблюдаются тёмные линии.

Температуру наружных слоёв звезды, от которых приходит излучение, определяют по распределению энергии в непрерывном спектре (рис. 5.14), а также по интенсивности разных спектральных линий. Длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. По мере увеличения температуры положение максимума смещается от красного к фиолетовому концу спектра. Количественно эта зависимость выражается законом Ви́на: ,где λmax — длина волны (в см), на которую приходится максимум излучения, а T — абсолютная температура.

 

 

Рис. 5.14. Распределение энергии в непрерывном спектре Солнца и чёрного тела при различных температурах

Как оказалось, эта температура для различных типов звёзд заключена в пределах от 2500 до 50 000 К. Изменение температуры меняет состояние атомов и молекул в атмосферах звёзд, что отражается в их спектрах. По ряду характерных особенностей спектров звёзды разделены на спектральные классы, которые обозначены латинскими буквами и расположены в порядке, соответствующем убыванию температуры: O, B, A, F, G, K, M.

У наиболее холодных (красных) звёзд класса M в спектрах наблюдаются линии поглощения некоторых двухатомных молекул (например, оксидов титана, циркония и углерода). Примерами звёзд, температура которых около 3000 К, являются Антарес и Бетельгейзе.

В спектрах жёлтых звёзд класса G с температурой около 6000 К, к которым относится и Солнце, преобладают линии металлов: железа, натрия, кальция и т. д. По температуре, спектру и цвету сходна с Солнцем звезда Капелла.

Для спектров белых звёзд класса A, которые имеют температуру около 10 000 К (Вега, Денеб и Сириус), наиболее характерны линии водорода и множество слабых линий ионизованных металлов. В спектрах наиболее горячих звёзд появляются линии нейтрального и ионизованного гелия.

Различия звёздных спектров объясняются отнюдь не разнообразием их химического состава, а различием температуры и других физических условий в атмосферах звёзд. Изучение спектров показывает, что преобладают в составе звёздных атмосфер (и звёзд в целом) водород и гелий. На долю всех остальных химических элементов приходится не более нескольких процентов.

Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения. Если источник излучения (звезда или любой другой объект) приближается к наблюдателю или удаляется от него со скоростью v, то наблюдатель будет регистрировать изменение длины волны принимаемого излучения. В случае уменьшения расстояния между наблюдателем и звездой длина волны уменьшается и соответствующая линия смещается к сине-фиолетовому концу спектра. При удалении звезды длина волны излучения увеличивается, а линия смещается в красную его часть. Это явление получило название эффекта Доплера, согласно которому зависимость разности длин волн от скорости источника по лучу зрения v и скорости света c выражается следующей формулой: ,где λ0 — длина волны спектральной линии для неподвижного источника, а λ — длина волны в спектре движущегося источника.

Эффект Доплера наблюдается в оптической и других областях спектра и широко используется в астрономии.

 

4. Диаграмма «спектр — светимость»

Полученные данные о светимости и спектрах звёзд уже в начале XX в. были сопоставлены двумя астрономами — ЭйнаромГерцшпрунгом (Голландия) и Генри Расселлом (США) — и представлены в виде диаграммы, которая получила название «диаграмма Герцшпрунга—Расселла». Если по горизонтальной оси отложены спектральные классы (температура) звёзд, а по вертикальной — их светимости (абсолютные звёздные величины), то каждой звезде будет соответствовать определённая точка на этой диаграмме (рис. 5.15). В результате обнаруживается определённая закономерность в расположении звёзд на диаграмме — они не заполняют всё её поле, а образуют несколько групп, названных последовательностями. Наиболее многочисленной (примерно 90% всех звёзд) оказалась главная последовательность, к числу звёзд которой принадлежит наше Солнце (его положение отмечено на диаграмме кружочком). Звёзды этой последовательности отличаются друг от друга по светимости и температуре, и взаимосвязь этих характеристик соблюдается весьма строго: самую высокую светимость имеют наиболее горячие звёзды, а по мере уменьшения температуры светимость падает. Красные звёзды малой светимости получили название красных карликов. Вместе с тем на диаграмме существуют и другие последовательности, где подобная закономерность не соблюдается. Особенно заметно это среди более холодных (красных) звёзд: помимо звёзд, принадлежащих главной последовательности и потому имеющих малую светимость, на диаграмме представлены звёзды высокой светимости, которая практически не меняется при изменении их температуры. Такие звёзды принадлежат двум последовательностям (гиганты и сверхгиганты), получившим эти названия вследствие своей светимости, которая значительно превосходит светимость Солнца. Особое место на диаграмме занимают горячие звёзды малой светимости — белые карлики.

Рис. 5.15. Диаграмма «спектр — светимость»

Лишь к концу XX в., когда объём знаний о физических процессах, происходящих в звёздах, существенно увеличился и стали понятными пути их эволюции, удалось найти теоретическое обоснование тем эмпирическим закономерностям, которые отражает диаграмма «спектр — светимость».

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Какова светимость звезды ξ Скорпиона, если её звёздная величина 3m, а расстояние до неё 7500 св. лет?

Дано :

m = 3m

D = 7500 св. лет

Решение :

lg L = 0,4(5 – M).

M = m + 5 – 5 lg D, где D = 7500 : 3,26 = 2300 пк.

Тогда M = 3 + 5 – 5 lg 2300 = –8,8.

lg L = 0,4•[5 – (–8,8)] = 5,52.

L — ?

Отсюда L = 330 000.

Ответ : L = 330 000.

Вопросы для самоконтроля.

( Ответить письменно (кратко) писать!!!!).

От чего зависит цвет звезды?


Дата добавления: 2022-07-16; просмотров: 89; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!