А теперь давайте с вами решим одну несложную задачу.

Г.                        9 класс

Тема: «Явление самоиндукции »

Здравствуйте ребята.

Запишите число, классная работа.

                     Двадцать пятое марта

                        Классная работа

Тема: Явление самоиндукции

Изучим новый материал

Вы уже знаете, что основы электродинамики были заложены Андре Мари Ампером в 1820 году. Его работы вдохновили многих инженеров на конструирование различных устройств, с многими из которых вы знакомились в восьмом классе. Среди них электродвигатель, изобретённый Борисом Семёновичем Якоби, телеграф Самюэля Морзе, а также электромагнит, усовершенствованием которого занимался Джозеф Генри.

Удивительно, но уже тогда он смог разработать магниты, способные поднимать массу до полутора тонн при собственной массе магнита около 10 кг. Так вот, создавая различные электромагниты, в 1832 году Генри обнаружил новое явление в электромагнетизме — явление самоиндукции, которое, как оказалось, являлось частным случаем проявления электромагнитной индукции.

Познакомимся с этим явлением поближе. Для этого соберём электрическую цепь, состоящую из источника тока, ключа, двух одинаковых лампочек, катушки с сердечником и резистора, с электрическим сопротивлением, равным сопротивлению обмотки катушки.

Если мы замкнём цепь, то заметим, что лампочка, соединённая последовательно с реостатом, загорается практически моментально. А вот лампочка, соединённая последовательно с электромагнитом, с заметным опозданием (в реальном времени около одной секунды). Следовательно, при замыкании цепи электрический ток в катушке постепенно нарастает от нуля до некоторой постоянной величины.

— Почему же так происходит?

Давайте разбираться. Итак, при замыкании цепи в катушке возникает магнитное поле. При увеличении силы тока начинает увеличиваться индукция магнитного поля катушки, и магнитный поток, пронизывающий её витки.

Получается, что проходящий через катушку переменный магнитный поток создаётся не внешними причинами, а в связи с изменением тока в самом устройстве. Мы уже знаем, при изменении магнитного потока в витках катушки возникает индукционный ток. При этом, согласно правилу Ленца, возникающий индукционный ток будет препятствовать увеличению силы тока в цепи катушки. Когда же ток в катушке достигает постоянной величины, изменение магнитного потока прекращается и индукционный ток исчезает.

Явление возникновения индукционного тока в катушке при изменении силы тока в ней называется самоиндукцией. При этом возникающий индукционный ток называется током самоиндукции.

Таким образом, чем больше будет сила тока самоиндукции, тем большее противодействие он оказывает изменению силы тока, созданного источником. Поэтому ток в ветви с катушкой возрастает медленнее, чем в ветви с реостатом.

В 1853 году Уильямом Томсоном для оценивания способности катушки противодействовать изменению силы тока в ней, была введена специальная физическая величина, называемая коэффициентом самоиндукции (или просто индуктивностью). Обозначается она большой латинской буквой L, а единицей индуктивности в СИ является генри (Гн).

В старших классах будет показано, что индуктивность катушки зависит от:

· её размеров и формы;

· количества витков;

· наличия или отсутствия сердечника.

Теперь посмотрим, что происходит при размыкании цепи. Для этого соберём цепь, состоящую из источника постоянного тока, ключа, катушки и лампочки. Параллельно катушке подключим ещё одну лампочку, обладающую большим сопротивлением (например, неоновую).

При замыкании цепи лампа, соединённая последовательно с катушкой, загорается, а неоновая нет, так как напряжение, необходимое для её зажигания, намного больше чем то, которое подаётся от нашего источника тока.

А теперь разомкнём цепь.

Видим, что лампа накаливания гаснет, зато неоновая даёт кратковременную яркую вспышку. Это говорит о том, что уменьшение тока в цепи создаёт такой сильный ток самоиндукции, противодействующий уменьшению тока в катушке, что напряжение на ней оказывается достаточным для зажигания лампы.

Объясняется наблюдаемое явление всё тем же правилом Ленца: при размыкании цепи вместе с током исчезает и его магнитное поле, что вызывает в катушке появление тока самоиндукции, направление которого совпадает с направлением тока, создаваемого источником, и усиливает его.

Чтобы в этом убедиться, проведём такой опыт. В цепь постоянного тока параллельно катушке подключим гальванометр. При замыкании цепи через гальванометр пойдёт ток и стрелка гальванометра отклонится (в нашем случае вправо). Разомкнём цепь и поставим около стрелки «задержку».

Теперь, когда мы вновь замкнём цепь, эта задержка не даст стрелке гальванометра отклониться вправо. Разомкнув цепь, мы заметим, как стрелка гальванометра отклониться влево, обнаруживая текущий по цепи ток, который не сразу исчезает в катушке, а постепенно. Этот опыт показывает, что действительно, ток самоиндукции в катушке имеет тоже направление, что и ток, текущий в ней до отключения источника.

Появление сильного тока самоиндукции при размыкании цепи говорит о том, что магнитное поле катушки с током обладает определённым запасом энергии. Но откуда она берётся?

Чтобы ответить на этот вопрос давайте проведём небольшой опыт. Итак, у нас есть электрическая цепь, в которой с лампочкой последовательно подключена катушка большой индуктивности. Через ключ мы можем замыкать эту цепь либо на источник тока, либо на резистор. С помощью амперметра будем следить за током в цепи. Для начала замкнём нашу цепь на источник тока: амперметр фиксирует появление в цепи тока постоянной силы.

Теперь быстро переключим ключ, замыкая катушку на резистор: амперметр фиксирует ток, который со временем убывает. В течение этого времени всё ещё происходит перенос заряда в цепи катушки и резистора, то есть совершается работа —убывание тока вызывает явление самоиндукции.

Эта работа и равна энергии магнитного поля катушки с током, так как именно энергия характеризует способность тел совершать работу. Энергию магнитного поля можно рассчитать по формуле:

— А что, ток самоиндукции возникает лишь в катушках?

Конечно же нет. Его возникновение возможно в любых проводниках. Однако, в катушках с малым числом витков (а тем более в прямых проводниках), то есть в элементах цепи, обладающих малой индуктивностью, ток самоиндукции совсем небольшой, и поэтому не оказывает какого-либо значимого влияния на процессы в цепи.

А теперь давайте с вами решим одну несложную задачу.

В заключении отметим, что явление самоиндукции имеет место в любых случаях изменения силы тока в цепи, содержащей индуктивность, или изменения самой индуктивности. Вообще, данное явление подобно явлению инерции в механике. Вы знаете, что, например, автомобиль не может мгновенно набрать скорость, как не может и мгновенно остановиться, как бы велика не была тормозящая сила. Точно так же, за счёт самоиндукции при замыкании цепи, сила тока не сразу достигает своего максимального значения, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу — самоиндукция будет поддерживать его некоторое время, даже не смотря на большое сопротивление цепи.

 

Посмотрите ссылку:

https://youtu.be/lS2jfDOrg_I

 

Домашнее задание: изучить конспект урока; выполнить тестовое задание.

 

Тестовое задание по темам: Направление индукционного тока, Правило Ленца, Явление самоиндукции Тест включает в себя 10 заданий с выбором ответа.

 

1. При внесении магнита в катушку, замкнутую на гальвано­метр, в ней возникает индукционный электрический ток. Направление тока в катушке зависит

А. от скорости движения магнита
Б. от того, каким полюсом вносят магнит в катушку

1) только А
2) только Б
3) и А,и Б
4) ни А, ни Б

2. На рисунке приведена демонстрация опыта по проверке правила Ленца. Опыт проводится со сплошным кольцом, а не с разрезанным, потому что

1) сплошное кольцо сделано из стали, а разрезанное — из алюминия
2) сплошное кольцо сделано из алюминия, а разрезанное — из стали
3) в сплошном кольце не возникает вихревое электриче­ское поле, а в разрезанном — возникает
4) в сплошном кольце возникает индукционный ток, а в разрезанном — нет

3. На рисунке запечатлен тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Северный полюс магнита находится вблизи сплошного алюминиевого кольца. Коромысло с кольцами может свободно вращаться вокруг вертикальной опоры. Если теперь передвинуть магнит вправо, то ближайшее к нему кольцо будет

1) оставаться неподвижным
2) перемещаться навстречу магниту
3) удаляться от магнита
4) совершать колебания

4. На рисунке запечатлен тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного алюминиевого кольца. Коромысло с кольцами может
свободно вращаться вокруг вертикальной опоры. Если те­перь отодвинуть магнит влево, то ближайшее к нему кольцо будет

1) оставаться неподвижным
2) совершать колебания
3) перемещаться за магнитом
4) удаляться от магнита

5. Постоянный магнит вводят в замкнутое алюминиевое кольцо. При этом

1) кольцо отталкивается от магнита
2) кольцо притягивается к магниту
3) кольцо остается неподвижным
4) среди ответов нет правильного

6. Постоянный магнит удаляют от замкнутого алюминиевого кольца. При этом

1) кольцо отталкивается от магнита
2) кольцо притягивается к магниту
3) кольцо остается неподвижным
4) среди ответов нет правильного

7. Магнит выводят из кольца и в нем возникает ток, направление которого показано на рисунке. Какой полюс магнита ближе к кольцу?

1) Северный
2) Южный
3) Отрицательный
4) Положительный

8. Энергия магнитного поля катушки, в которой при силе тока 5 А индуктивность 0,4 Гн, равна

1) 5 Дж
2) 10 Дж
3) 20 Дж
4) 25 Дж

9. Индуктивность катушки увеличили в 2 раза, а силу тока в ней уменьшили в 2 раза. Энергия магнитного поля катушки при этом

1) увеличилась в 8 раз
2) уменьшилась в 2 раза
3) уменьшилась в 8 раз
4) не изменится

10. Во сколько раз надо уменьшить индуктивность катушки, чтобы при неизменном значении силы тока в ней энергия магнитного поля катушки уменьшилась в 4 раза?

1) В 2 раза
2) В 4 раза
3) В 8 раз
4) В 16 раз

 


Дата добавления: 2022-06-11; просмотров: 28; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!