Тепловые и атомные электрические станции



РЕФЕРАТ

Контрольная работа состоит из пояснительной записки, выполненной в текстовом редакторе Microsoft Office Word 2013, на 20 страницах машинописного текста, включая 6 иллюстраций, 4 таблицы и 4  литературных источников. Рисунки выполнены в графическом редакторе Paint.NET (при наличии).

Целью контрольной работы является изучение преимуществ атомных электрических станций (АЭС) по сравнению с тепловыми электростанциями.

Задачами работы являются выполнение задач 1 и 2.

Во введении обосновывается потребность человек в энергии. В связи с этим растет перспективность ядерной энергетики.

В первом вопросе рассматриваются преимущество атомных электрических станций (АЭС) по сравнению с тепловыми электростанциями.

Во втором задании приводятся расчеты мощности, вырабатываемой генераторами деривационной ГЭС при условии, что глубина потока и ширина в безнапорном участке водовода одинаковы, по заданным параметрам.

Во втором задании приводятся расчеты термического КПД.

В заключении приводятся основные результаты, полученные в ходе выполнения контрольной работы.


СОДЕРЖАНИЕ

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. 5

1.1 Преимущества атомных электрических станций (АЭС) по сравнению с тепловыми электростанциями. 5

1.1.1 Атомные электрические станции. 5

1.1.2 Тепловые и атомные электрические станции. 6

1.1.3 Сравнение АЭС и ТЭЦ.. 8

ЗАКЛЮЧЕНИЕ. 11

2 ПРАКТИЧЕСКАЯ ЧАСТЬ. 12

2.1 Задача 1. Определение мощности деривационной гэс. 12

2.2 Задача 2. 16

Список использованных источников…………………………………………. 20

 


ВВЕДЕНИЕ

Известно, что наиболее освоенными и широко используемыми источниками энергии на Земле в настоящее время являются: полезные ископаемые органического происхождения, возобновляемые источники энергии также органического происхождения (древесное топливо и т. п.), а также источники гидравлической энергии (пригодные для этой цели реки и другие водоемы), в совокупности удовлетворяющие современные потребности человечества в энергии приблизительно на 80%.

Однако: запасы полезных ископаемых довольно ограничены и распределены на Земле весьма не равномерно с геополитической точки зрения; возобновляемые источники энергии (древесное топливо и т. п.) недостаточно калорийны и их широкое использование для удовлетворения существующих сегодня потребностей грозит очевидной экологической катастрофой; возможности использования энергии водоемов также весьма ограничены и сопряжены с негативным влиянием на экологию, поэтому, наиболее авторитетных ученые отечественной и зарубежной науки полагают, что перспективным направлением для развития энергосистем в ближайшем обозримом будущем все еще будет оставаться ядерная энергетика, несмотря на возможные опасности связанные с использованием радиоактивных материалов, как основного топлива ядерных энергетических установок. Перспективность ядерной энергетики, несмотря на последствия чернобыльской трагедии, становится с каждым годом все более очевидной благодаря результатам исследований, провидимым в ведущих ядерных странах.


ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Преимущества атомных электрических станций (АЭС) по сравнению с тепловыми электростанциями

Атомные электрические станции

Атомные электрические станции преимущественно конденсационного типа - это те же тепловые электрические станции с паротурбинным приводом, но вместо парового котла на них используют ядерный реактор (Р). В реакторе происходит деление изотопов урана 235 (U235) и урана 238(U238). Цифрами обозначен атомный вес изотопа. Коэффициент полезного действия АЭС составляет 32 %.

 

Рисунок 1 – Схема паросиловой установки для выработки электроэнергии на АЭС

Ядерное топливо обеспечивает значительную экономию органического топлива. Атомные электрические станции можно сооружать в любом месте.

Атомным электрическим станциям предсказывали большое будущее. По прогнозам, выработка электроэнергии на АЭС к 2000 году должна была достигнуть 32 % от всей выработки в стране, но авария на Чернобыльской АЭС 26 апреля 1986 года внесла серьезные коррективы в развитие атомной энергии не только нашей страны, но и всего мира. Взрыв на четвертом блоке ядерного реактора с утечкой радиации привел к радиоактивному заражению территории около тысячи квадратных километров.

Авария нанесла значительный экономический и психологический урон. Она заставила критически переоценить уровень безопасности всех действующих и строящихся атомных электрических станций и отказаться от строительства новых. В настоящее время реализуются мероприятия по повышению уровня безопасности и надежности действующих АЭС.

Тепловые и атомные электрические станции

На тепловых электрических станциях электроэнергия вырабатывается вращающимся генератором, имеющим привод от теплового двигателя, чаще всего от паровой, реже – газовой турбины.

Коэффициент полезного действия современных ТЭС с паровыми турбинами достигает 40 %, с газовыми турбинами - не превышает 34 %. На ТЭС с паротурбинным приводом возможно использование любого вида топлива; газотурбинные станции используют только жидкое и газообразное. Паровая турбина не столь маневренна, как газовая.

По виду отпускаемой энергии паротурбинные ТЭС на органическом топливе подразделяются на конденсационные электрические станции (КЭС) и теплоэлектроцентрали (ТЭЦ). На конденсационных электрических станциях установлены турбоагрегаты конденсационного типа, они производят только электроэнергию. Теплоэлектроцентрали отпускают потребителям электрическую и тепловую энергию с паром и горячей водой.

 

 

Рисунок 2 – Схема паросиловой установки для выработки электроэнер-гии (КЭС): ПК- паровой котел; Т- паровая турбина; ЭГ- электрогенератор; К- конденсатор; Н – насос; охлаждающая вода показана стрелочками

Энергия топлива при сжигании в паровом котле (ПК) преобразуется в тепловую, которая используется для подогрева воды в котле и образования пара. Энергия водяного пара приводит во вращение турбину, соединенную с ротором электрогенератора. В генераторе механическая энергия превращается в электрическую.

Охлаждающая вода в результате прокачивания через конденсатор нагревается и затем сбрасывается обычно в водоем. Но имеется возможность использовать сбросную теплоту (q2) (которая составляет более половины всего количества теплоты, затраченной в цикле) для отопления, горячего водоснабжения и различных технологических процессов.

 

 

Рисунок 3 – Схема паросиловой установки для совместной выработки тепловой и электрической энергии (ТЭЦ)

Охлажденная вода, нагретая в конденсаторе, не выбрасывается в водоем, а прогоняется через отопительные приборы теплового потребителя (ТП) и, охлаждаясь в них, отдает полученную в конденсаторе теплоту. Это - ТЭЦ.

ТЭЦ связана с предприятием или жилым районом трубопроводами пара или горячей воды, и их чрезмерное удлинение вызывает повышенные тепловые потери. Поэтому ТЭЦ располагаются обычно непосредственно на предприятии, в жилом массиве или вблизи них.

КЭС связывают с потребителем только линии электропередачи, поэтому она может находиться вдали от потребителя, например, вблизи места добычи топлива.

Крупные КЭС, обеспечивающие электроэнергией целые промышленные районы, называются ГРЭС (государственные районные электростанции), их мощность составляет до 2/3 всей электрической мощности страны. 

Основой технологического процесса паротурбинной ТЭС является термодинамический цикл Ренкина для перегретого пара. Цикл Ренкина состоит из подвода теплоты (q1) в парогенератор, отвода теплоты в конденсаторе (q2) и процессов расширения пара в турбине и повышения давления воды в насосах. Соответственно этому циклу схема простейшей конденсационной электростанции включает в себя котельный агрегат с пароперегревателем (ПК), турбоагрегат (Т), конденсатор (К) и насосы (Н) для добавления питательной воды и перекачки конденсата из конденсатора в парогенератор (конденсатный и питательные насосы).

Сравнение АЭС и ТЭЦ

Главным преимуществом АЭС перед любыми другими электростанциями является их практическая независимость от источников топлива, т.е. удаленности от месторождений урана и радиохимических заводов. Энергетический эквивалент ядерного топлива в миллионы раз больше, чем органического топлива, и поэтому, в отличие, скажем, от угля, расходы на его перевозку ничтожны. Затраты на строительство АЭС находятся примерно на таком же уровне, как и на строительство пылеугольных ТЭС или несколько выше. Наконец, огромным преимуществом АЭС является ее относительная экологическая чистота.

Из таблицы видно, сколь огромны выбросы вредных веществ ТЭС, работающих на различных органических топливах Подобные выбросы на АЭС просто отсутствуют. Если ТЭС мощностью 1000 МВт потребляет в год 8 млн т кислорода для окисления топлива, то АЭС не потребляет кислорода вообще.

Таблица 1 – Годовые выбросы от ТЭС мощностью 1000 МВт, т

Вид выброса

Тип ТЭС

Пылеугольная Мазутная Газовая
Сернистые газы 138000 98000 13
Оксиды азота 20900 21800 12200
Оксид углерода 500 9 -
Углеводороды 210 680 -
Альдегиды 50 120 30
Золовая пыль 4500 730 450
Суммарные выбросы 164800 121300 12700

Главный недостаток АЭС — тяжелые последствия аварий в реакторном отделении с его разгерметизацией и выбросом радиоактивных веществ в атмосферу с заражением громадных пространств. Это не требует особых пояснений — достаточно вспомнить аварию на Чернобыльской АЭС. Для исключения таких аварий АЭС оборудуется сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими даже в случае так называемой максимальной проектной аварии (местный полный поперечный разрыв трубопровода циркуляционного контура в реакторном отделении) исключение расплавления активной зоны и ее расхолаживание. Для обеспечения радиационной безопасности АЭС оборудуют специальной приточно-вытяжной системой вентиляции, сложность которой не идет ни в какое сравнение с вентиляционной системой ТЭС. Отметим также некоторые эксплуатационные особенности АЭС. АЭС в силу ряда технических причин не могут работать в маневренных режимах, т.е. участвовать в покрытии переменной части графика электрической нагрузки. Конечно, из-за высокой стоимости АЭС должны работать с максимальной нагрузкой, но при их высокой доле в установленной мощности отдельных объединенных энергосистем и при больших неравномерностях графика суточной и недельной нагрузки возникает необходимость быстрых нагружений и разгружений АЭС, которые для них крайне нежелательны.

Параметры энергоблоков АЭС существенно ниже, чем ТЭС: температура пара перед турбиной почти в 2 раза, а давление более чем в 3 раза меньше. Это означает, что работоспособность 1 кг пара, протекающего через турбину АЭС, оказывается примерно вдвое меньше, чем через турбину ТЭС. Вместе с тем, большие капитальные затраты требуют большой единичной мощности энергоблоков АЭС. Отсюда — огромные расходы пара через турбоагрегаты АЭС по сравнению с турбоагрегатами ТЭС и соответственно огромные расходы охлаждающей воды. Тем не менее, при всех «недостатках» генерация электроэнергии на АЭС развивается.

 


ЗАКЛЮЧЕНИЕ

Показатели исследований последних лет в различных областях инженерных дисциплин и физики высоких энергий, а также заключения авторитетных международных комиссий, убедительно свидетельствуют в пользу дальнейшего развития ядерной энергетики в самых широких масштабах. Учитывая результаты существующих прогнозов по истощению к середине – концу следующего столетия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которого, по расчетам, должно хватить на 300 лет) из-за вредных выбросов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-размножителей хватит не менее чем на 1000 лет можно считать, что на данном этапе развития науки и техники атомные источники будут еще долгое время преобладать над остальными источниками электроэнергии. Уже сегодня существуют и одобрены экспертами из ведущих ядерных стран проекты по созданию ядерных энергетических установок на качественно новом уровне безопасности для различных географических зон с отличающимися климатическими условиями.


ПРАКТИЧЕСКАЯ ЧАСТЬ


Дата добавления: 2022-06-11; просмотров: 49; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!