В технической системе единиц давление кроме технической атмосферы измеряется также в физических атмосферах, А.



А = 1,033 am.

Важным при решении практических задач является выбор системы отсчета давления (шкалы давления). За начало шкалы может быть принят абсолютный нуль давления (аналог абсолютного нуля температуры) — 0абс. При отсчете давлений от этого нуля их называют абсолютными Рабс:

Однако, как показывает практика, технические задачи удобнее решать, используя избыточные давления Риз6, т.е. когда за начало шкалы принимается атмосферное давление — 0атм

Давление, которое отсчитывается «вниз» от атмосферного нуля, называется давлением вакуума Рвак, или вакуумом .

Рабс = Ра + Ризб, (абсолютное давление)

где Ра — атмосферное давление, измеренное барометром.

Связь между абсолютным давлением Рабс и давлением вакуума Рвак можно установить аналогичным путем, но уже исходя из положения точки С:

Рабс = Ра-Рвак

И избыточное давление, и вакуум отсчитываются от одного нуля (0атм), но разные стороны. Следовательно,

Ризб=-Рвак

Избыточное давление в жидкостях измеряется манометрами. Это весьма обширный набор измерительных приборов различной конструкции и различного исполнения

. 2.2. Свойства гидростатического давления и основной закон гидростатики

Гидростатикой называется раздел гидравлики, в котором рас­сматриваются законы, справедливые для покоящихся жидкостей. В неподвижной жидкости возникают только напряжения сжатия и не могут действовать касательные напряжения, так как любое касательное напряжение жидкости вызовет ее движение, т.е. нарушит состояние покоя. Ранее было показано, что напряжения сжатия вызывает сила, действующая перпендикулярно на бесконечно малую площадку. Отсюда вытекает первое свойство гидростатического давления: на внешней поверхности жидкости давление создает силу, действующую по нормали внутрь рассматриваемого объема жидкости. Причем под внешней поверхностью жидкости следует понимать не только свободные поверхности жидкости и стенки сосудов, но и поверхности объемов, выделяемых в жидкости.

Второе свойство гидростатического давления состоит в том, что в любой точке внутри покоящейся жидкости гидростатическое давление действует по всем направлениям одинаково, т.е. давление есть скалярная величина.

Исходя из этих свойств гидростатического давления, можно получить основной закон гидростатики. Пусть жидкость находится в сосуде, а на ее свободную поверхность действует давление Р0 (рис.). Определим давление Р в произвольно выбранной точке, которая находится на глубине h.

Условием равновесия выделенного объема жидкости в вертикальном направлении будет равенство

PS-G-P0s=0.

Вес G выделенного цилиндра жидкости можно определить, подсчитав его объем W:

G=W g=Sh g.

Подставив математическое выражение для G в уравнение равновесия и решив его относительно искомого давления р, оконча­тельно получим

Полученное уравнение называют основным законом гидростатики. Оно позволяет подсчитать давление в любой точке внутри покоящейся жидкости. '

Это позволяет сформулировать закон Паскаля: давление, приложенное к жидкости, передается по всем направлениям одинаково.

Пренебрегая малыми величинами, получим:

Для жидкости находящейся в состоянии равновесия справедлив так называемый закон Паскаля утверждающий, что всякое изменение давления в какой-либо точке жидкости передаётся мгновенно и без изменения во все остальные точки жидкости.

Закон Архимеда

Закон Архимеда о подъёмной (архимедовой) силе Fn , действую­щей на погружённое в жидкость тело, имеет вид

,

где Vm — объём жидкости, вытесненной телом.

В строительной практике этот закон применяется, например, при расчёте подземных резервуаров на всплытие в обводнённых грунтах. На рис. 5 показан резервуар, часть которого расположена ниже уровня грунтовых вод (УГВ). Таким образом, он вытесняет объём воды, равный объёму его погружённой части ниже УГВ, что вызывает появление архимедовой силы Fп. Если Fп превысит собственный вес резервуара Gр, то конструкция может всплыть.

Закон Архимеда часто формулируют несколько иначе: «тело, погружнное в жидкость теряет в своём весе столько сколько весит вытесненная им жидкость».

Таким образом, на погружённое в жидкость тело действуют две силы:

вес тела и выталкивающая сила

Если Тело будет тонуть.

Если Тело будет всплывать до тех пор пока вес тела и величина выталкивающей силы, действующей на погруженную часть объёма тела не уравновесятся.

Если Тело будет находиться во взвешенном состоянии в жидкости, т.е. плавать внутри жидкости на любой заданной глубине.

Сообщающиеся сосуды

В своей практической деятельности человек часто сталкивается с вопросами равно­весия жидкости в сообщающихся сосудах, когда два сосуда А и В соединены между со­бой жёстко или гибким шлангом. Сами сосуды (А и В) обычно называются коленами. Такой гидравлический элемент часто используется в различных гидравличе­ских машинах (гидравлические прессы и др.), системах гидропривода и гидроавтоматики, различных измери­тельных приборах и в ряде других случаев. С природ ными сообщающимися сосудами человек встречается с давних пор: сообщающимися сосудами больших раз­меров являются водонасыщенные пласты горных пород с системой колодцев, играющих роль отдельных колен природной гидродинамической системы.

В открытых сообщающихся сосудах, заполненных однородной жидкостью свобод­ный уровень жидкости устанавливается на одном и том же уровне в обоих коленах. Если в коленах сосудов залиты две несмешивающиеся жидкости с различной плотностью, то свободные уровни жидкости в правом и левом коленах устанавливаются на разных высо­тах в зависимости от соотношения плотностей жидкостей.

Для типичного случая, изображённого на рисунке, запишем уравнение равновесия жидкости относительно уровня раздела жидкостей.

или:


Дата добавления: 2022-06-11; просмотров: 18; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!