Тактильная, температурная и болевая чувствительность

Преподаватель: Медведева А.Д.

Дата занятия: 15.11.2021

Группа: СД 21-6

 

ЛЕКЦИЯ ПО ТЕМЕ: «Понятие об анализаторах. Орган вкуса, обоняния. Кожа. Зрительная сенсорная система»

 

I . Актуальность

Живые организмы непрерывно получают информацию о бесконечном многообразии изменений, которые происходят во внешней и внутренней среде, через органы чувств. Но каждый из данных органов воспринимает только определенный параметр изменений. Поэтому раздражитель предстает как комплекс различных признаков, при оценке которых у человека возникает определенное ощущение формы, цвета, температуры, запаха и других свойств раздражителя. Такое разделение раздражителя на составляющие его характеристики представляет собой физиологический анализ. Он осуществляется благодаря наличию в организме специализированных структур, которые получили название анализаторы (сенсорные системы).

II. Цели занятия.

Учебные.

Знать:

-  понятие о сенсорных системах, виды анализаторов;

- принцип работы мышечно-суставной рецепции;

- анатомию и физиологию зрительного анализатора;

- принципы работы тактильной, болевой и температурной чувствительности;

- ликвор, образование, пути его оттока и роль;

- понятие висцеральной чувствительности.

Воспитательные:

- подчеркнуть принцип неразрывного единства структуры и функции органов;

- способствовать формированию чувства высокой ответственности, сострадания и милосердия к людям;

- способствовать воспитанию определённых качеств личности - добросовестности, инициативности, коллективизма;

- способствовать формированию интереса к будущей профессиональной деятельности.

Развивающие:

- способствовать развитию у студентов понимания сущности и социальной значимости своей будущей профессии, устойчивого интереса к ней;

- развивать творческое мышление, профессиональную речь, познавательную деятельность студентов;

- способствовать формированию клинического и логического мышления;

- развивать умение использовать полученные знания на других дисциплинах;

- развивать умение сравнивать.

План лекции:

Понятие о сенсорных системах. Классификация рецепторов.

Мышечно-суставная рецепция

Орган зрения: анатомия и физиология

Тактильная, температурная и болевая чувствительность

5. Висцеральная чувствительность.

ТЕКСТ ЛЕКЦИИ

Понятие о сенсорных системах. Классификация рецепторов.

ЦНС получает информацию о внешнем мире и внутреннем состоянии организма от рецепторов, которые представляют собой чувствительные нервные окончания, специализированные к воздействию различных раздражений.

Рецепторы отличаются друг от друга по своей структуре и выполняемым функциям. В зависимости от характера воздействующего раздражителя рецепторы делят на экстерорецепторы, интерорецепторы и проприорецепторы.

Экстерорецепторы воспринимают раздражения из внешней среды. К ним относят зрительные рецепторы глаза (фоторецепторы), слуховые рецепторы (фонорецепторы), обонятельные рецепторы слизистой оболочки носа, вкусовые рецепторы, расположенные в слизистой оболочке языка, температурные, болевые и тактильные рецепторы кожи и слизистых оболочек.

Интерорецепторы расположены во внутренних органах, в стенке сосудов. Они возбуждаются изменениями состояния и деятельности органов и внутренней среды организма.

Проприорецепторы локализованы в мышцах, сухожилиях, связках, суставных поверхностях костей. Они возбуждаются в результате растяжения мышц и изменения положения конечностей и других частей тела по отношению друг к другу и в пространстве.

Все рецепторы можно разделить на две большие группы: дистантные и контактные. Дистантные рецепторы способны воспринимать раздражения от предметов, находящихся на значительном расстоянии от организма (зрительные, слуховые, обонятельные рецепторы). Контактные рецепторы воспринимают раздражения только от предметов, которые непосредственно к ним приложены, т. е. находятся в близком соприкосновении с рецепторным аппаратом. К ним относят тактильные, температурные, вкусовые рецепторы.

Рецепторы трансформируют энергию раздражения в энергию нервного импульса. Причиной возникновения возбуждения в рецепторе является деполяризация его мембраны в результате воздействия раздражителя. Эту деполяризацию называют рецепторным, или регенераторным, потенциалом. Образование рецепторного потенциала связано с повышением проницаемости мембраны для ионов натрия. Когда рецепторный потенциал достигает определенной - критической - величины, он вызывает разряд афферентных импульсов в нервном волокне, связанном с рецептором.

Одним из свойств рецепторов является адаптация, т. е. приспособление к силе раздражителя. Способностью к адаптации обладают в большей или в меньшей степени почти все рецепторы. Исключение составляют проприорецепторы.

Явление адаптации заключается в том, что происходит снижение чувствительности рецепторов к постоянно действующему раздражителю. Внешне адаптация проявляется в привыкании к постоянно действующему раздражителю - запаху, шуму, давлению одежды и т. д.

Как только постоянное действие раздражителя заканчивается, возникшая под его влиянием адаптация постепенно исчезает. Чувствительность рецепторов при этом повышается.

Мышечно-суставная рецепция

Поступление в центральную нервную систему информации о положении тела в пространстве и степени сокращения каждой мышцы происходит при возбуждении проприорецепторов, находящихся в мышцах, сухожилиях, околосуставных сумках, надкостнице.

Проприорецепторами являются: мышечные веретена, находящиеся среди мышечных волокон; тельца Гольджи, расположенные в сухожилиях; пачиниевы тельца, обнаруженные в фасциях, покрывающих мышцы сухожилиях, связках и надкостнице. Показано, что изменение активности различных проприорецепторов происходит в момент сокращения или расслабления мышц. Так, возбуждение мышечных веретен отмечается при удлинении (в момент расслабления или растяжения) мышечных волокон. Тельца же Гольджи возбуждаются при сокращении мышечных волокон. При повышении активности мышечных веретен импульсы, поступающие от них в центральную нервную систему, облегчают сокращение данной мышцы и тормозят сокращение мышцы-антагониста. Импульсы, приходящие в центральную нервную систему от телец Гольджи, вызывают противоположную реакцию, т. е. тормозят сокращение данной мышцы и способствуют сокращению мышцы-антагониста.

Мышечные веретена всегда находятся в состоянии некоторого возбуждения, поэтому от мышечных веретен постоянно поступают нервные импульсы в центральную нервную систему, в спинной мозг. Это приводит к тому, что двигательные нервные клетки - мотонейроны - спинного мозга находятся в состоянии тонуса и непрерывно посылают редкие нервные импульсы по эфферентным путям к поперечнополосатым мышечным волокнам, обеспечивая их умеренное сокращение – тонус.

Орган зрения

Органом зрения является глаз. Расположено глазное яблоко в полости глазницы. Его стенку образуют три оболочки. Переднюю часть наружной оболочки глаза называют роговицей, которая в дальнейшем переходит в склеру, или белковую оболочку. Следующей оболочкой глаза является сосудистая. Внутренняя оболочка - сетчатка, на которой расположены фоторецепторы.

В состав глаза входят рецепторный аппарат, находящийся в сетчатке, и оптическая система. Значение последней заключается в том, что она собирает световые лучи и обеспечивает четкое действительное изображение предметов на сетчатке, но в уменьшенном и обратном виде.

Оптическая система глаза представлена передней и задней поверхностью роговой оболочки, хрусталиком и стекловидным телом. Поступающие в глаз световые лучи проходят через оптическую систему глаза и попадают на сетчатку. Ход лучей зависит от показателей преломления и радиуса кривизны поверхности роговой оболочки, хрусталика и стекловидного тела. Преломляющую силу оптической системы глаза выражают в диоптриях. Одна диоптрия (дптр) - преломляющая сила линзы, имеющей фокусное расстояние 100 см. При увеличении преломляющей силы фокусное расстояние уменьшается. Преломляющая сила оптической системы глаза при рассматривании далеких предметов составляет около 59 дптр, при рассматривании близких предметов - 70,5 дптр.

Для ясного видения предмета необходимо, чтобы лучи от всех его точек падали на сетчатку. Человек с нормальным зрением может хорошо рассмотреть как близко, так и далеко расположенные предметы. Приспособление газа ясному видению разноудаленных предметов называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика, что приводит к сдвигам в его преломляющей способности. При рассматривании близких предметов хрусталик делается более выпуклым, благодарящему расходящиеся лучи от предмета сходятся на сетчатке глаза.

Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют выпуклость хрусталика.

Хрусталик заключен в капсулу, переходящую по краям в волокна цинновой связки, прикрепленной к ресничному телу (рис. 91). Цинновые связки всегда натянуты, и их натяжение передается капсуле, сжимающей и уплотняющей хрусталик. В ресничном теле находятся гладкие мышечные волокна. При их сокращении наступает ослабление тяги цинновых связок, а значит, уменьшение давления на хрусталик, который вследствие своей эластичности принимает более выпуклую форму.

Существуют две главные аномалии преломления лучей в глазу - дальнозоркость и близорукость. Они связаны, как правило, не с недостаточностью преломляющих сред, а с ненормальной длиной глазного яблока.

Сетчатка и ее строение. Сетчатка имеет сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов - палочки и колбочки - и несколько видов нервных клеток с их многочисленными отростками.

Каждая палочка или колбочка состоит из наружного членика, чувствительного к действию света, содержащего зрительный пигмент, и внутреннего сегмента, в котором находятся ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке. В палочках содержится пигмент родопсин, или зрительный пурпур, в колбочках - пигмент йодопсин.

При действии света в палочках и колбочках осуществляются физические и химические процессы. В частности, под влиянием света родопсин разрушается. При затемнении глаз происходит его восстановление. Для этого необходим витамин А. Если же в организме витамин А отсутствует, то образование родопсина резко нарушается, что приводит к развитию так называемой куриной слепоты, т. е. неспособности видеть при слабом свете или в темноте. Йодопсин также подвергается разрушению под влиянием света и образуется в темноте. Установлено, что распад йодопсина в отличие от родопсна совершается в 4 раза медленнее. У человека в сетчатке имеется около 6-7 млн. колбочек и 110-125 млн. палочек. Палочки и колбочки распределены в сетчатке неравномерно. Центральная ямка сетчатки содержит только колбочки (до 140 тыс. на 1 мм2). По направлению к периферии сетчатки количество колбочек уменьшается, а палочек соответственно возрастает. Периферическая часть сетчатки содержит исключительно палочки. Участок сетчатки глаза, где сосредоточены только колбочки, получил название желтого пятна. Место выхода зрительного нерва из глазного яблока - сосок (диск) зрительного нерва - совсем не содержит фоторецепторов и нечувствителен к свету. Это так называемое слепое пятно.

Колбочки осуществляют дневное зрение и воспринимают цвета. Палочки обеспечивают сумеречное, ночное зрение.

Свет, попадая на сетчатку глаза, вызывает изменение зрительного пигмента в палочках и колбочках. Один из образовавшихся промежуточных продуктов превращения родопсина приводит фоторецепторы сетчатки глаза в возбуждение. Возникшие нервные импульсы передаются на нервные клетки сетчатки глаза, в которых осуществляется их сложная обработка. Переработанные нервные импульсы по волокнам зрительного нерва поступают в затылочную область - мозговой конец анализатора. Полагают, что по волокнам зрительного нерва передаются сигналы не о состоянии каждого отдельного рецептора, а об определенных параметрах того или иного изображения, об элементах зрительных образов.

Адаптация. От освещенности предмета зависит чувствительность глаза к восприятию света. Так если человек перейдет из темного помещения в светлое, то в первое время наступает ослепление. Постепенно глаз адаптируется к свету за счет понижения чувствительности фоторецепторов сетчатки глаза. Это явление получило название световой адаптации. При переходе из светлого помещения в темное человек сначала ничего не видит. Через некоторое время чувствительность фоторецепторов сетчатки повышается, появляются контуры предметов, затем начинают различаться их детали, т. е. проявляется темновая адаптация.

Бинокулярное зрение. Рассматривание предметов обоими глазами называют бинокулярным зрением. Когда человек смотрит на какой-либо предмет обоими глазами, то у него не получается восприятия двух одинаковых предметов. Это связано с тем, что изображения от всех предметов при бинокулярном зрении падают на соответственные, или идентичные, участки сетчатки, в результате чего в представлении человека эти два изображения сливаются в одно. Если слегка надавить сбоку на один глаз, то у человека начинает "двоиться" в глазах, так как в этом случае изображения от предмета падают на неидентичные участки сетчатки.

Бинокулярное зрение имеет большое значение в определении расстояния до предмета, его формы. Оценка величины предмета связана с размером его изображения на сетчатке и расстоянием предмета от глаза.

Цветовое зрение. Человек обладает способностью различать большое количество цветов. Наиболее признанной теорией, объясняющей механизм цветового зрения, является трехкомпонентная теория Ломоносова - Гельмгольца. В свое время М. В. Ломоносов (1756) высказал предположение о наличии в сетчатке трех типов элементов, воспринимающих при основных цвета. Эти положения М. В. Ломоносова были в дальнейшем разработаны Юнгом, а затем Гельмгольцем. Согласно трехкомпонентной теории, в сетчатке имеются три типа фоточувствительных колбочек, воспринимающих красный, зеленый и сине-фиолетовый цвета. Разложение светочувствительных веществ, находящихся в колбочках, вызывают раздражение нервных окончаний. Возбуждение, дошедшее до коры головного мозга, суммируемся, и возникает ощущение одного однородного цвета. Одинаковое и одновременное раздражение трех типов цветовоспринимающих элементов сетчатки даст ощущение белого цвета.

Возникновение ощущения того или иного цвета связано с раздражением глаза лучами видимой части спектра различной длины. Раздражение глаза электромагнитными волнами длиной 620-760 нм (6200-7600 А) вызывает ощущение красного цвета, 510-550 нм (5100-5500 А) - зеленого, 390-450 нм (3900-4500 А) - фиолетового цвета.

В настоящее время, используя микроэлектродную технику и регистрируя биотоки от отдельных нервных волокон, отходящих от колбочек, шведские физиологи обнаружили в сетчатке четыре типа колбочек, реагирующих на электромагнитные волны красной, зеленой и синей частей спектра. Четвертый тип колбочек возбуждается при изменении яркости света.

Тактильная, температурная и болевая чувствительность

Тактильные рецепторы находятся на поверхности кожи и слизистых оболочках полости рта и носа. Они возбуждаются при прикосновении к ним или давлении на них.

К тактильным рецепторам относят мейснеровы тельца, расположенные в сосудах кожи, и меркелевы диски, имеющиеся в большом количестве на кончиках пальцев и губах. К рецепторам давления относят тельца Пачини, которые сосредоточены в глубоких слоях кожи, в сухожилиях, связках, брюшине, брыжейке кишечника.

Нервные импульсы, возникшие в тактильных рецепторах, по чувствительным волокнам поступают в заднюю центральную извилину коры головного мозга.

В различных местах кожи тактильная чувствительность проявляется в неодинаковой степени. Так, она наиболее высока на поверхности губ, носа, языка, а на спине, подошве стоп, животе выражена в меньшей степени. Показано, что одновременное прикосновение к двум точкам кожи не всегда сопровождается возникновением ощущения двух воздействий. Если указанные точки лежат очень близко друг к другу, то возникает ощущение одного прикосновения. Наименьшее расстояние между точками кожи, при раздражении которых возникает ощущение двух прикосновении, называют порогом пространства. Пороги пространства неодинаковы в различных местах кожи: они минимальны на кончиках пальцев, губах и языке и максимальны на бедре, плече, спине.

Температура окружающей среды возбуждает терморецепторы, сосредоточенные в коже, на роговой оболочке глаза, в слизистых оболочках. Изменение температуры внутренней среды организма приводит к возбуждению температурных рецепторов, расположенных в гипоталамусе.

Различают терморецепторы, воспринимающие холод и тепло. Тепловые рецепторы представлены тельцами Руффини, холодовые - колбочками Краузе. Голые окончания афферентных нервных волокон также могут выполнять функции Холодовых и тепловых рецепторов.

Терморецепторы в коже располагаются на разной глубине: более поверхностно находятся холодовые, глубже - тепловые рецепторы. Вследствии этого время реакции на холодовые раздражения меньше, чем на тепловые. Терморецепторы сгруппированы в определенных точках поверхности тела человека, при этом холодовых точек значительно больше, чем тепловых. Выраженность ощущения тепла и холода зависит от места наносимого раздражения, величины раздражаемой поверхности и окружающей температуры.

Болевые ощущения возникают при действии любых раздражителе чрезмерной силы. Однако в настоящее время окончательно не установлено, какие рецепторы воспринимают боль. Одни исследователи считают, что особых рецепторов, воспринимающих боль, не существует, другие полагают, что возникновение боли связано с раздражением окончаний особых нервных волокон. Получены данные, свидетельствующие о том, что в формировании боли имеет значение образование в нервных окончаниях гистамина. Так, при подкожном введении гистамина в очень малой концентрации появляется ощущение боли. Возникновение боли связывают также с другими веществами, образующимися в тканях в месте повреждения. Такими веществами, в частности, являются брадикинин, XII фактор свертывания крови (фактор Хагемана).

5. Висцеральная чувствительность.

Интерорецепторы, находящиеся во внутренних органах, получили название висцерорецепторов.

Висцерорецепторы имеют низкий порог раздражения. Они обладают большой специфичностью по отношению к действующим на них раздражителям. Во внутренних органах имеются рецепторы, реагирующие на механические раздражения (механорецепторы), на действие химических веществ (хеморецепторы), на сдвиги температуры внутренней среды организма (терморецепторы) и на изменение осмотического давления (осморецепторы).

Висцерорецепторы участвуют в регуляции работы внутренних органов, осуществляют рефлекторные взаимодействия между ними. Раздражение рецепторов внутренних органов в условиях нормы не сопровождается возникновением осознаваемых ощущений. Однако при возбуждении некоторых висцерорецепторов, например рецепторов мочевого пузыря и прямой кишки в случае растяжения их стенок, возникают ощущения позыва на мочеиспускание и дефекацию.


Дата добавления: 2021-12-10; просмотров: 20; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!