Цель : изучить условия когерентности световых волн, интерференцию в тонких пленках, кольца Ньютона.



ФИЗИКА, ГРУППА № 36, 27.09.2021 г.

Занятие № 10

Тема: Интерференция механических волн.

Цель : изучить сложение в пространстве волн, амплитуду колебаний волн, когерентные волны

План:

1. Интерференция.

2. Условие максимумов и минимумов.

3. Когерентные волны.    

 

 

Теоретический материал для самостоятельного изучения

Очень часто в среде одновременно распространяется несколько различных волн. Например, когда в комнате беседуют несколько человек, то звуковые волны накладываются друг на друга. Проще всего проследить за наложением механических волн, наблюдая волны на поверхности воды. Если мы бросим в воду два камня, образовав тем самым две круговые волны, то можно будет заметить, что каждая волна проходит сквозь другую и ведет себя в дальнейшем так, как будто другой волны совсем не существовало.

Вообще же в каждой точке среды колебания, вызванные двумя волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраическую сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Интерференция - сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний частиц среды.

Выясним, при каких условиях наблюдается интерференция волн. Для этого рассмотрим более подробно сложение волн, образующихся на поверхности воды.

В любой точке М на поверхности воды (рис. 8.44) будут складываться колебания, вызванные двумя волнами (от источников O1 и O2). Амплитуды колебаний, вызванных в точке М обеими волнами, будут, вообще говоря, различаться, так как волны проходят различные пути d1 и d2. Но если расстояние Ɩ между источниками много меньше этих путей (Ɩ « d1 и Ɩ « d2), то обе амплитуды можно считать практически одинаковыми.

Результат сложения волн, приходящих в точку М, зависит от разности фаз между ними. Пройдя различные расстояния d1 и d2, волны имеют разность хода Δd = d2 - d1. Если разность хода равна длине волны λ, то вторая волна запаздывает по сравнению с первой на один период (именно за период волна проходит путь, равный ее длине волны λ). Следовательно, в этом случае гребни (как и впадины) обеих волн совпадают.

Условие максимумов.

На рисунке ниже изображена зависимость от времени смещений х1 и х2, вызванных двумя волнами при Δd = λ. Разность фаз колебаний равна нулю (или, что то же самое, 2π, так как период синуса равен 2π). В результате сложения этих колебаний возникают результирующие колебания с удвоенной амплитудой. Колебания результирующего смещения х на рисунке показаны цветной штриховой линией. То же самое будет происходить, если на отрезке Δd укладывается не одна, а любое целое число длин волн.

 

Амплитуда колебаний частиц среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн:

Δd = ± kλ,

 

где k = 0, 1, 2, ....

 

Условие минимумов.

Пусть теперь на отрезке Δd укладывается половина длины волны. Очевидно, что при этом вторая волна отстает от первой на половину периода. Колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующих колебаний равна нулю, т. е. в рассматриваемой точке колебаний нет. То же самое произойдет, если на отрезке укладывается любое нечетное число полуволн.

Амплитуда колебаний частиц среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн:

Если разность хода d2 - d1 принимает промежуточное значение между то и амплитуда результирующих колебаний принимает некоторое промежуточное значение между удвоенной амплитудой и нулем.

 

Когерентные волны.

Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебаний была постоянной.

Источники, соответствующие этим двум условиям, называются когерентными.

От латинского слова cohaereus — взаимосвязанный.

Когерентными называют и созданные ими волны. Только при сложении когерентных волн образуется устойчивая интерференционная картина.

Если же разность фаз колебаний источников не остается постоянной, то в любой точке среды разность фаз колебаний, возбуждаемых двумя волнами, будет меняться с течением времени. Поэтому амплитуда результирующих колебаний с течением времени будет непрерывно изменяться. В результате максимумы и минимумы перемещаются в пространстве, и интерференционная картина размывается.

Вследствие интерференции происходит перераспределение энергии в пространстве. Она не распределяется равномерно по всем частицам среды, а концентрируется в максимумах за счет того, что в минимумы не поступает вовсе.

Интерферируют только когерентные (согласованные) волны.

 

 

Основная литература по теме урока:                                                                                                        

1) Учебник «Физика 11» Г.Я. Мякишев, Б.Б. Буховцев, М. «Просвещение» 

2) интернет ресурсы 

 

Домашнее задание: изучить материал, сделать краткий конспект.

Задание скидывать в группу

36 гр. https://vk.com/club194179937

 

 

ФИЗИКА, ГРУППА № 36, 27.09.2021 г.

Занятие № 11

Тема: Интерференция света.

Цель : изучить условия когерентности световых волн, интерференцию в тонких пленках, кольца Ньютона.

План:

1. Условие когерентности световых волн.

2. Интерференция в тонких пленках.

3. Кольца Ньютона.

4. Длина световой волны.

 


Дата добавления: 2021-11-30; просмотров: 15; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!