МАГНІТНІ ВЛАСТИВОСТІ МАТЕРІАЛІВ. МАГНІТНІ ВТРАТИ



Матеріал практичної роботи повністю відповідає кодексу з підготовки і дипломування моряків та несення вахти (Розділ А-ІІІ/6) та IMO MODEL COURSE № 7.08 офіцер-електротехнік та формує наступні компетентності вимоги: «Контроль роботи електричних, електронних установок та систем керування» та «Безпечне використання електричного обладнання».

 

Мета роботи:Вивчитиосновні властивості магнітних матеріалів. Ознайомитись з втратами магнітних матеріалів. Згідно свого варіанту розвʼязати задачі.

Теоретичний матеріал

Магнітні матеріали поділяють на магнитомягкие, магнітотверді і матеріали спеціалізованого призначення.

До магнитомягких відносять матеріали з малою коерцетівной силою (Н з<800 А / м) і високою магнітною проникністю. Вони намагнічуються до насичення в будь-яких магнітних полях, мають вузьку петлею гистерезиса і малими втратами на перемагнічування. Їх використовують як осердя дроселів, трансформаторів, електромагнітів і т.п.

До магнітотвердих відносять матеріали з великою коерцитивною силою (Н ç> 4кА / м). Вони перемагнічуватися у дуже сильних магнітних полях і служать в основному для виготовлення постійних магнітів.

Серед матеріалів спеціалізованого призначення в радіоелектроніці застосовуються матеріали з прямокутною петлею гистерезиса (ППГ), ферити для пристроїв надвисокочастотного діапазону і магнітострикційні матеріали.

2. Магнітом'які матеріали для постійних і низькочастотних магнітних полів

Магнітом'які матеріали повинні володіти високою магнітною проникністю, малою коерцитивною силою, великий індукцією насичення, малими втратами на перемагнічування. Магнітні властивості матеріалів повинні мало залежати від механічних напружень, внаслідок дії яких сильно змінюється mпоч,mмакс, Н с. Магнітні властивості після механічної обробки відновлюють термообробкою (випалом). У деяких випадках важливими є температурна і тимчасова стабільність, лінійність кривої намагнічування і ін

Цим вимогою найбільш повно задовольняють залізо та його сплави. Залізо - це типовий магнитомягкие матеріал, магнітні властивості якого істотно залежать від вмісту домішок, структури (особливо величини зерна - чим більший зерна, тим вище магнітні властивості).

Внаслідок низького питомого опору залізо використовують для виготовлення виробів, які працюють у постійних магнітних полях. Технічно чисте залізо застосовується для одержання майже всіх феромагнітних сплавів.

Сталь електротехнічна є основним магнитомягких матеріалом і являє собою сплави заліза і кремнію (до 4,5%). Добавки кремнію підвищують питомий опір, збільшують mн і mmax, зменшують Н с, втрати на гістерезис, константи магнітної анізотропії та магнітострикції, підвищують стабільність магнітних властивостей у часі, але разом з тим збільшують крихкість і твердість сталі. Властивості стали значно поліпшуються в результаті утворення магнітної текстури при її холодною прокатці і подальшому відпалі у водні. Вздовж напрямку прокатки спостерігається більш високе значення магнітної проникності і менше втрати на гістерезис. Текстуровані сталі використовуються при виготовленні стрічкових сердечників.

У цьому випадку магнітний потік повністю проходить вздовж напрямку легкого намагнічування. Сталь випускається у вигляді рулонів, листів та різаної стрічки товщиною 0,05 - 1 мкм. Тонкий прокат застосовується в полях підвищеної частоти (до 1 кГц). Зі зменшенням товщини зменшуються втрати на вихрові струми, однак зростає коерцитивна сила і збільшуються втрати на гістерезис.

Пермаллои - железонікелевих сплави, що володіють великою магнітною проникністю в області слабких полів і дуже маленькою коерцитивною силою. Високо пермаллои містять 72 - 80% нікелю, а нізконікелевие - 40 - 50% нікелю. Зі збільшенням змісту нікелю зростає магнітна проникність, проте підвищуються питомі втрати і зменшується індукція насичення. Нізконікелевие пермаллои мають mн = (1.5 - 4) × 10 3,mмакс = (15 - 40) × 10 3, H c = 8 -32 A / м, B m = 1 - 1.5 Tл, а високо - mн = (1 - 4) × 10 4,mмакс = (7 - 35) × 10 4, H c = 0.4 - 4.8 A / м, B m = 0.5 - 1 Tл.

Великі значення mн і mмакс пермаллоя пояснюються невеликими величинами магнітної апізотропіі і магнітострикції. Це полегшує поворот магнітних моментів з напрямку легкого намагнічування в напрямку поля і не викликає механічних напружень, які ускладнюють зміщення доменних меж під впливом слабкого поля. Магнітна проникність пермаллои сильно знижується зі збільшенням частоти (з-за впливу вихрових струмів) і напруженості подмагнічівающего (постійного) поля. Для збільшення питомої опору, поліпшення магнітних характеристик та їх стабільності в діапазоні напруженостей магнітного поля і температур, підвищення механічної міцності і оброблюваності в пермалой додають легуючі елементи - молібден, хром, кремній, марганець, мідь.

Пермалой дуже чутливий до механічних впливів, тому при виготовленні деталей з нього необхідно уникати ударів, рихтування і т.п. Після всіх механічних операцій виробляють термообробку у вакуумі або в атмосфері водню.

Пермалой використовується для виготовлення магнітних екранів, сердечників малогабаритних і імпульсних трансформаторів, сердечників котушок індуктивності, головок апаратури магнітного запису.

Альсифера - потрійні сплави заліза з кремнієм і алюмінієм. Оптимальний склад альсифера 9.5% Si, 5.6% Al, решта Fe. Такий сплав відрізняється твердістю і крихкістю. Властивості альсифера (mн = 3500, mмакс = 117000, H c = 1.8 A / м) не поступаються властивостям високо пермаллоя. Вироби з альсифера - магнітні екрани, корпуси приладів і т.п. виготовляються методом лиття з товщиною стінок не менше 2 - 3 мм на увазі крихкості сплаву. Його можна розмелювати в порошок і використовувати для виготовлення високочастотних пресованих сердечників.

Ферити і магнітодіелектрики.

Феррити - хімічні сполуки окису заліза Fe 2 О3 з оксидами одного або кількох двовалентних металів, що мають загальну формулу Мео × Fe 2 O 3, де Ме - двовалентний метал. Ферит може бути магнітним, якщо на місці Ме варто іон марганцю, нікелю, магнію, міді і деякі інші метали, і немагнітним - якщо стоїть іон цинку.

Феррити отримують у вигляді кераміки та монокристалів. Феритова кераміка не містить склоподібної фази. Вироби з феритів отримують методом спікання спресованої маси порошкоподібних оксидів металів. Феррити є твердими і тендітними матеріалами і допускають тільки шліфування і полірування.

Технічні ферити являють собою розчин магнітного і немагнітного феритів. Феррити для радіочастот діляться на дві групи: нікель-цинкові (NiO-ZnO-Fe 2 O 3) і марганець-цинковий (MnO-ZnO-Fe 2 O 3). Цинкові ферити додають у магнітні ферити для збільшення магнітної проникності і зменшення коерцитивної сили, але це призводить до зниження температурної стабільності магнітних властивостей.

Значення величин mн і H c визначається складом і структурою матеріалу. Мікроскопічні пори, ділянки з дефектною кристалічною решіткою та ін заважають вільному переміщенню доменних меж і є причиною зменшення магнітної проникності. Зі збільшенням розміру кристалічних зерен зростає mн.

У слабких змінних магнітних полях ферити володіють незначними втратами на вихрові струми і гістерезис. Тому значення тангенса кута втрат tg d на високих частотах в основному визначається магнітними втратами, зумовленими релаксаційним та резонансними явищами. Частота, при якій починається різке зростання tg d називається критичною f кр. Зазвичай f кр - це частота, при якій tg d = 0.1.

Інерційність зміщення доменних меж, яка проявляється на високих частотах призводить також до зниження магнітної проникності феритів. Частоту f гр, при якій mн зменшується до 0.7 від її значення в постійному магнітному полі називають граничної. Як правило, f кр<fгр.

Марганець - цинкові ферити в області частот до 1 МГц володіють кращими магнітними властивостями, ніж нікель - цинкові. У них менший відносний тангенс кута втрат - tg d / mн, більш висока індукція насичення і температура Кюрі. Однак нікель-цинкові ферити володіють більш високою питомою опором і кращими частотними властивостями.Чим більше mн, тим при більш низьких частотах спостерігається її зниження. Феррити з великим значенням mеф володіють великим значенням tg d і меншим f кр.

Щоб уникнути погіршення магнітних характеристик, ферити слід оберігати від механічних навантажень.

Маркування магніто-м'яких феритів наступна. На першому місці стоїть чисельне значення mн, наступне за ним літери Н та В означають відповідно низькочастотний (f кр = 0.1-50МГц) або високочастотний (f кр = 50 - 600МГц) матеріал, що стоїть далі буква М означає марганець-цинковий, велика Н - нікель-цинковий, літій - цинковий і т.д. ферити. Буква С означає, що ферит застосовується в області сильних полів, Н - контурах, перебудовуються підмагнічуванням.

По електричним властивостям ферити відносяться до напівпровідників з електронною провідністю. Їх електропровідність обумовлена ​​слабкозв'язаного електронами, які належать іонів заліза або іншим катіонів змінної валентності. Такі електрони під впливом теплового руху можуть переходити від іона Fe 2 + до іона Fe 3 +, який перетворюється на двовалентний іон Fe 2 + і зберігає це властивість деякий час. Зі збільшенням концентрації іонів Fe 2 + зростає питома провідність і зменшується енергія активації Е 0. Зростання температури супроводжується різким підвищенням провідності через збільшення числа переміщаються електронів.

s = s0 exp [-Е 0 / кТ],

де s0 - постійна величина для даного матеріалу;

Е 0 - енергія активації електропровідності (Е 0 = 0.1 - 0.5 ЕВ).

Концентрація двовалентних іонів Fe 2 + залежить від складу фериту та режиму його випалу. Для зниження концентрації Fe 2 + вводять різні добавки.

Процеси поляризації феритів та діелектричні втрати визначаються дрейфом слабосвязанних електронів під дією електричного поля. Зі зростанням частоти поля зменшується число електронів, які бере участь в дрейфі, і зменшується відстань, на яку вони зміщуються, і відповідно знижується поляризованность. Наприклад на частотах нижче 1000 Гц у марганець-цинкових феритів величина e ~ 100000, а зі збільшенням частоти eрізко падає до значення близько 100. Частотні характеристики діелектричних втрат мають максимум.

Магнітом'які ферити застосовуються як осердя контурних котушок постійної і змінної індуктивності, сердечників імпульсних трансформаторів, трансформаторів розгортки телевізорів, магнітних модуляторів і підсилювачів. З них виготовляють стрижневі магнітні антени, індуктивні лінії затримки і ін Монокристали магнитомягких феритів застосовуються при виготовленні магнітних головок запису і відтворення сигналу звукового і відеодіапазонов у магнітофонах, тому що вони володіють високим питомим опором (що важливо для зменшення втрат) і більшою твердістю в порівнянні з металевими.

Магнітодіелектрикі- це композиційні магнитомягкие матеріали, що складаються з феромагнетика і діелектрика, вживаного як сполучного електроізоляційного матеріалу. Основа повинна володіти високими магнітними властивостями, а зв'язка - здатністю утворювати між зернами суцільну електроізоляційну плівку однакової товщини. В якості основи застосовують карбонильное залізо, альсифера, молібденовий пермалой. Ізолюючої зв'язкою служать фенолформоальдегідние смоли, полістирол, скло та ін

Задача1:

В результаті іспитів зразка з електротехнічної сталі товщиною  та  були визначені втрати на гистерезис  і втрати на вихрові струми :

– для листів товщиною : .

– для листів товщиною : .

Іспити проводились на частоті .

       Визначити втрати в цих сортах сталі  при частотах , якщо величина індукції магнітного поля (тобто її амплітуда) у всіх випадках незмінна , а закон зміни вектора індукції синусоїдальний.

Рішення:

Перемагнічування феромагнетиків в змінних полях супроводжуються втратами енергії, які визивають нагрів матеріалу. Загалом втрати на перемагнічування складаються з втрат на гистерезис, на вихрові струми та магнітний наслідок. Останнім можна знехтувати. Отже можна записати (так як по умові закон зміни вектора індукції синусоїдальний)

                                           (1)

Отже для листів товщиною

для листів товщиною

Відомо, що

 – втрати на гистерезис. (2)

 – втрати на вихрові струми. (3)

де  – коефіцієнт, що залежить від властивостей матеріалу;  – максимальна індукція, що досягається в даному циклі.  – показник ступеню, що приймає значення від 1.6 до 2 в залежності від ;  – частота;  – об’єм зразку;  – коефіцієнт пропорційний питомій провідності речовини (залежить від геометричної форми і розмірів поперечного розрізу зразка, що намагнічується).

       Перепишемо () та () врахувавши, що

                                        (4)

                                         (5)

Так як по умові задачі , то ліва частина рівнянь (4) і (5) залишиться незмінною при зміні частоти.

Тоді для листів товщиною

– при

                                         (6)

                                    (7)

– при

Підставивши результат із (6,7) в (2,3) отримаємо

– при

для листів товщиною

– при

                                                 (8)

                                         (9)

– при

Підставивши результат із (8,9) в (2,3) отримаємо

– при

Завдання на практичну роботу:

1. Ознайомитись з теоретичним матеріалом практичної роботи.

2. Ознайомитись з примірниками розвʼязання задач на тему практичної роботи.

3. Згідно свого варіанту розвʼязати задачі.

4. Привести розрахунки у зошиті з практичних робіт.

5. Привести відповіді на контрольні запитання (письмово).

6. Навести висновки з практичної роботи.

 

Контрольні запитання:

1. Які матеріали називають магнітними?

2. На які різновиди поділяються магнітні матеріали?

3. Які матеріали називають діамагнетиками?

4. Які матеріали називають парамагнетиками?

5. Які матеріаали називають ферромагнетиками?

6. Які матерали називають магнітом'якими феритами?

7. Які матеріали називають магнітодіелектриками?

ПРАКТИЧНА РОБОТА №9


Дата добавления: 2018-02-18; просмотров: 1194; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!