Кручение прямого стержня круглого поперечного сечения – вывод формул для определения напряжений и перемещений.



Объемная деформация

Влияние различных факторов на механические характеристики метериалов при растяжении и сжатии.

Зависимость механических характеристик конструкционных материалов от их химического состава, внешних условий и условий нагружения весьма многообразна; отметим наиболее существенные, характерные для типичных условий эксплуатации конструкций.

Влияние содержания углерода. Введение различных легирующих добавок в металлы позволяет значительно повысить прочностные характеристики сплавов. На рис. 1 показано влияние процентного содержания углерода на механические свойства конструкционной стали. Как видно, с увеличением содержания углевода, временное сопротивление повышается в несколько раз; однако при этом значительно ухудшаются пластические свойства; относительное удлинение и относительное сужение при разрыве уменьшаются.

 

Рис.1. Влияние процентного содержания углерода

 

Влияние температуры окружающей среды. Повышенные температуры оказывают существенное влияние на такие механические характеристики конструкционных материалов, как ползучесть и длительная прочность. Ползучестью называют медленное непрерывное возрастание пластической (остаточной) деформации под воздействием постоянных нагрузок.Длительной прочностью называется зависимость разрушающих напряжений (временного сопротивления) от длительности эксплуатации. Свойства ползучести и длительной прочности проявляются у углеродистых сталей при Т>300oС, для легированных сталей при Т>350oС. для алюминиевых сплавов при Т>100oС. Некоторые материалы проявляют эти свойства и при обычных температурах.

Мерой оценки ползучести материала является предел ползучести — напряжение, при котором пластическая деформация за определенный промежуток времени достигает заданной величины. В некоторых случаях сопротивление ползучести оценивается величиной скорости деформации по прошествии заданного времени. При обозначении предела ползучести указывается величина деформации, время и температура испытаний. Например, для жаропрочного сплава ХН77ТЮР при температуре 700oС за время 100 часов и деформации ползучести 0,2% предел ползучести составляет 400 МПа: .

Ползучесть сопровождается релаксацией напряжений — самопроизвольным уменьшением напряжений с течением времени при неизменной деформации. Скорость релаксации напряжений возрастает при повышении температуры. Мерой скорости релаксации служит время релаксации—промежуток времени, в течение которого напряжение уменьшается по сравнению с начальным значением в е=2,718 раза.

Прочность материала при повышенных температурах оценивается пределом длительной прочности — напряжением, при котором материал разрушается не ранее заданного времени. При обозначении предела длительной прочности указывается продолжительность нагружения и температура испытания. Так, для сплава ХН77ТЮР при температуре 700oС и времени 1000 часов предел длительной прочности составляет . При кратковременных испытаниях для этого же сплава при температуре 700oС пределы прочности и текучести соответственно равны: .

Влияние повышенных температур на характеристики прочности и пластичности можно проследить на рис. 2 и 3, где представлены осредненные результаты экспериментов для 1—углеродистой стали, содержащей 0,15% углерода; 2—0,40% углерода, 3—хромистой стали. Прочность углеродистых сталей с повышением температуры до 650—700oС снижается почти в десять раз. Наиболее резкое снижение наблюдается для алюминиевых сплавов. Наибольшими значениями при высоких температурах обладают литые жаропрочные сплавы, содержащие 70—80% никеля. Снижение пределов текучести с повышением температуры происходит примерно так же, как и снижение . Для углеродистых сталей характерным является ухудшение пластических свойств (охрупчивание) при температурах около 300oС (кривая 2 на рис. 3).

 

Рис.2. Влияние температуры на упругие свойства

 

Рис.3. Влияние температуры на пластические свойства

 

Влияние температур на упругие свойства. Температурный коэффициент линейного расширения и температурный коэффициент модуля упругости связаны между собой соотношением

или

где r и m — постоянные, характеризующие параметры кристаллической решетки. На рис. 4 приведена зависимость безразмерного модуля упругости Е/Е0 некоторых конструкционных материалов от температуры (E0— модуль упругости материала при обычной температуре): 1 — нержавеющая сталь; 2 — алюминиевые сплавы, 3 — углеродистые стали, 4 — титановые сплавы.

Для сталей с повышением температуры испытаний с 25 до 450oС модули упругости Е и G уменьшаются на 20—40%, при этом, начиная с 300—400oС наблюдается расхождение между значениями модулей, определенными при статических и динамических испытаниях.

Изменение модулей упругости прималый колебаниях температуры (от –50 до +50oС) незначительно и им обычно пренебрегают.

 

Рис.4. Зависимость модуля упругости от температуры

Кручение прямого стержня круглого поперечного сечения – вывод формул для определения напряжений и перемещений.

Кручением называется такой вид деформации, при котором в поперечном сечении стержня возникает лишь один силовой фактор — крутящий момент Мz. Крутящий момент по определению равен сумме моментов внутренних сил относительно продольной оси стержня Oz. Нормальные силы, параллельные оси Oz, вклада в крутящий момент не вносят. С силами, лежащими в плоскости поперечного сечения стержня (интенсивности этих сил — касательные напряжения и ) Мz связывает вытекающее из его определения уравнение равновесия статики (рис. 1)

Условимся считать Mz положительным, если со стороны отброшенной части стержня видим его направленным против часовой стрелки (рис. 2). Это правило проиллюстрировано на рис. 1 и в указанном соотношении, где крутящий момент Мz принят положительным. Численно крутящий момент равен сумме моментов внешних сил, приложенных к отсеченной части стержня, относительно оси Ог.

Рис.1. Связь крутящего момента с касательными напряжениями

 

Рис.2. Иллюстрация положительного и отрицательного крутящего момента

 

Рассмотрим кручение призматических стержней кругового поперечного сечения. Исследование деформаций упругого стержня с нанесенной на его поверхности ортогональной сеткой рисок (рис. 3) позволяет сформулировать следующие предпосылки теории кручения этого стержня:

  1. поперечные сечения остаются плоскими (выполняется гипотеза Бернулли);
  2. расстояния между поперечными сечениями не изменяются, следовательно ;
  3. контуры поперечных сечений и их радиусы не деформируются. Это означает, что поперечные сечения ведут себя как жесткие круговые пластинки, поворачивающиеся при деформировании относительно оси стержня Ог. Отсюда следует, что любые деформации в плоскости пластинки равны нулю, в том числе и ;
  4. материал стержня подчиняется закону Гука. Учитывая, что , из обобщенного закона Гука в форме получаем . Это означает, что в поперечных сечениях, стержня возникают лишь касательные напряжения , а вследствие закона парности касательных напряжений, равные им напряжения действуют и в сопряженных продольных сечениях. Следовательно напряженное состояние стержня — чистый сдвиг.

Рис.3. Иллюстрация кручения: а) исходное и б) деформированное состояния

 

Выведем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения. Как видно, поворот правого торцевого сечения относительно неподвижного левого на угол (назовем его углом закручивания стержня) вызывает поворот продольных волокон на угол (угол сдвига), поскольку на величину искажаются углы ортогональной сетки продольных и поперечных рисок модели.

Двумя смежными сечениями вырежем элемент стержня длиной dz и, поскольку нас интересуют деформации элемента, левое сечение его будем считать неподвижным (рис. 5). При повороте правого сечения на угол в соответствии с гипотезой о недеформируемости радиусов, правый конец волокна АВ (отстоящий от оси элемента на величину полярного радиуса ) будет перемещаться по дуге BB1, вызывая поворот волокна на угол сдвига

Обратим внимание на то, что в соответствии с рис. 5 и рис. 6, а сдвиг и связанное с ним касательное напряжение перпендикулярны радиусу . Определим , воспользовавшись законом Гука для чистого сдвига

(1)

 

Рис.5. Расчетная модель определения касательных напряжений

 

а) ортогональность и
Рис.6. Распределение касательных напряжений при кручении:

 

Здесь — погонный угол закручивания стержня, который остается пока неизвестным. Для его нахождения обратимся к условию статики, записав его в более удобной для данного случая форме (рис. 6, a)

(2)

Подставляя (1) в (2) и учитывая, что

где Jp—; полярный момент инерции поперечного сечения (для круга с диаметром d ), получаем

(3)

 

Рис.7. Распределение напряжений для кольцевого сечения

 

а) разрушение дерева, б) разрушение чугуна
Рис.8. Распределение исходных касательных и главных напряжений:

 

Подставляя выражение (3) в (1), получаем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения

(4)

Как видно из (4), сдвиги и касательные напряжения пропорциональны расстояний от оси стержня. Обратим внимание на структурные аналогии формул для нормальных напряжений чистого изгиба и касательных напряжений кручения.

Мерой деформации стержня при кручении является погонный угол закручивания стержня, определяемый по (3). Поскольку величина DJp стоит в знаменателе формулы и при заданной нагрузке (Mz через нее выражается) тем меньше, чем больше DJp, последнюю называют жесткостью поперечного сечения при кручении.

Пользуясь (3) для определения угла закручивания элемента длиной dz

найдем полный угол закручивания стержня длиной l

(5)

В случае, если по длине стержня Мz и DJp постоянны, получаем

когда эти величины кусочно-постоянны, то:

(6)

Отметим, что полученные формулы по структуре аналогичны формулам для деформаций при растяжении стержня.

Наибольшие касательные напряжения возникают у внешней поверхности стержня, т. е. при

где Wр — момент сопротивления при кручении или полярный момент сопротивления

.

Полярный момент сопротивления, стоящий в знаменателе для максимальных касательных напряжений, очевидно, является геометрической характеристикой сечения, а условие прочности стержня при кручении принимает вид

(7)

где — допускаемое напряжение на кручение.

Напряженное состояние – чистый сдвиг. Характеристика материала при чистом сдвиге. Свойство парности касательных напряжений. Следствия из свойства парности касательных напряжений. Удельная потенциальная энергия при чистом сдвиге.

Чистым сдвигом называют такой вид напряженного состояния, при котором по граням выделенного из материала элемента действуют только касательные напряжения.

Напряжение в наклонных сечениях (площадках)

Рассмотрим более подробно особенности напряженного состоя­ния, возникающего в однородном растянутом стержне. Определим напряжения, возникающие на некоторой наклонной площадке, со­ставляющей угол a с плоскостью нормального сечения (рис. 2.6, а).

                                             Рис. 2.6

Из условия åz = 0, записанного для отсеченной части стержня (рис. 2.6, б), получим:

                                             р Fa = s F,                        (2.17)

где F - площадь поперечного сечения стержня, Fa = F/cos a - пло­щадь наклонного сечения. Из (2.17) легко установить:

                                             р = s сos a.                       (2.18)

Раскладывая напряжение р по нормали и касательной к на­клонной площадке (рис. 2.6, в), с учетом (2.18) получим:

sa = p cos a = s cos2 a; ta = p sin a = s sin 2 a .     (2.19)

Полученные выражения показывают, что для одной и той же точки тела величины напряжений, возникающих в сечениях, про­ходящих через эту точку, зависят от ориентации этой площадки, т.е. от угла a. При a = 0 из (2.19) следует, что sa = s, ta = 0. При a = , т.е. на продольных площадках, sa = ta = 0. Это означает, что продольные слои растянутого стержня не взаимодействуют друг с другом. Касательные напряжения ta принимают наибольшие зна­чения при a = , и их величина составляет tmax= . Важно отме­тить, как это следует из (2.19), что . Следовательно, в любой точке тела на двух взаимно перпендикулярных площадках касательные напряже­ния равны между собой по абсолютной величине. Это условие является общей закономерностью любого напряженного состояния и носит название


Дата добавления: 2018-02-15; просмотров: 1598; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!