Дается краткая характеристика каждого издания с рекомендациями по использованию. 15 страница



 

Рис. 7.13. Простейшее герконовое реле
с симметричным замыкающим контактом

 

При отключении обмотки магнитный поток и электро­магнитная сила спадают и под действием сил упругости КС размыкаются. Таким образом, в герконовых реле отсутствуют детали, подверженные трению (места крепления якоря в электромагнитных реле), а КС одновременно вы­полняют функции магнитопровода, токопровода и пружины.

В связи с тем что контакты в герконе управляются маг­нитным полем, герконы называют магнитоуправляемыми контактами.

На основе герконов могут быть созданы также реле с размыкающими и переключающими контактами. В гер­коне с переключающим контактом (рис. 7.14, а) неподвиж­ные КС 1, 3 иподвижный 2 размещены в баллоне 4.При появлении сильного магнитного поля КС 2 притягивается к КС 1 и размыкается с КС 3.Один из КС переключаю­щего геркона (например, 2)может быть выполнен из не­магнитного материала (рис. 7.14, б). Герконовое реле (рис. 7.14, в)имеет два подвижных КС 1, 2,два неподвижных КС 5, 6 идве обмотки управления 7, 8.При согласном включении обмоток замыкаются КС 1 и 2. При встречном включении обмоток КС 1 замыкается с КС 5,а КС 2 с КС 6. При отсутствии тока в обмотках все КС разомкнуты. Гер­коновое реле (рис. 7.14, г) имеет переключающий контакт 3 сферической формы. При согласном включении обмоток 7 и 8 контакт 3 притягивается к КС и КС 2 и замыкает их. После отключения обмоток 7 и 8 и при согласном вклю­чении обмоток 9 и 10 контакт 3 замыкает КС 5 и КС 6. Так как КС герконов выполняют функции возвратной пружины, им придаются определенные упругие свойства. Упругость КС обусловливает возможность их вибрации («дребезга») после удара, который сопутствует срабаты­ванию. Длительность такой вибрации достигает 0,25 мс при общем времени срабатывания 0,5 ÷ 1 мс.

 

 

Рис. 7.14. Переключающие герконы

 

Одним из способов устранения влияния вибраций является исполь­зование жидкометаллических контактов. В переключаю­щем герконе (рис. 7.15, а) внутри подвижного КС 1 име­ется капиллярный канал, по которому из нижней части баллона 4 поднимается ртуть 5. Ртуть смачивает поверх­ности касания КС 1 с КС 2 или КС 3.В момент удара контактов при срабатывании возникает их вибрация. Из-за ртутной пленки на контактной поверхности КС 1 вибрация не приводит к разрыву цепи. В кон­струкции на рис. 7.15, б между КС 2,КС 3 и ртутью 5 находится ферромагнитная изоляционная жидкость 6.При возникновении магнитного поля ферромагнит­ная жидкость 6 перемещается вниз, в положение, при котором поток будет наибольшим. Ртуть вытесняется вверх и замыкает КС 2 и КС 3.Следует отметить, что жидкометаллический контакт позволяет уменьшить переходное сопротивление и значительно увеличить коммутируемый ток. На­личие ртути удлиняет процесс разрыва контактов, что уве­личивает время отключения реле.

Управление герконом можно осуществлять и с помощью постоянного магнита. Если постоянный магнит установлен вблизи геркона, его магнитный поток замыкается через КС, которые в результате этого находятся в замкнутом состоянии. Использование постоянного магнита совместно с управляющей катушкой позволяет создать герконовое реле с размыкающим контактом.

 

Рис. 7.15. Ртутные герконы

Лекция №8

 Электрическая дуга, физические явления,
основы горения и гашения дуги постоянного тока

ОТКЛЮЧЕНИЕ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ (ЭЛЕКТРИЧЕСКАЯ ДУГА)
ОБЩИЕ СВЕДЕНИЯ

Большая группа электрических аппаратов представле­на коммутационными устройствами, с помощью которых замыкается и размыкается электрическая цепь. Электриче­ский разряд, возникающий при размыкании контактов, приводит к их износу и в значительной степени определяет надежность и долговечность аппарата. Этот разряд в окру­жающем контакт газе является либо тлеющим разрядом, либо электрической дугой. Тлеющий разряд возникает при отключении тока менее 0,1 А при напряжении на контак­тах 250 ÷ 300 В. Такой разряд происходит на контактах маломощных реле, а в более мощных аппаратах является переходной фазой к разряду в виде электрической дуги. Если ток и напряжение в цепи выше определенных значений, то имеет место дуговой разряд, обладающий следующими особенностями:

1. Дуговой разряд имеет место только при относитель­но больших токах. Минимальный ток дуги для различных материалов для металлов составляет примерно 0,5 А.

2. Температура центральной части дуги очень велика и может достигать 6 000 ÷ 25 000 К.

3. При дуговом разряде плотность тока на катоде чрез­вычайно велика и достигает 102 ÷ 103 А/мм2.

4. Падение напряжение у катода составляет всего 10 ÷ 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характерные области: околокатодную, область столба дуги, околоанодную. В каждой из этих областей процессы ионизации и деионизации протекают по-раз­ному.

А) Околокатодная область.

Занимает весьма небольшое пространство длиной не более 10-6 м. Около катода возникает положительный объ­емный заряд, создаваемый положительными ионами. Меж­ду этим положительным объемным зарядом и катодом со­здается электрическое поле с напряженностью до 107 В/м, в котором движутся электроны, вышедшие из катода и со­здающие электрический ток. Электрическое поле воздейст­вует на электроны, увеличивая их скорость. При соударе­нии такого электрона с нейтральной частицей может прои­зойти ионизация, для чего электрон должен обладать определенной энергией.

Напряжение (разгоняющее напряжение), которое должен пройти электрон для приобретения энергии, необ­ходимой для ионизации, называется потенциалом иониза­ции. Для газов этот потенциал колеблется от 24,58 В (ге­лий) до 13,3 В (водород). Пары металлов имеют значи­тельно меньший потенциал ионизации. Так, для паров меди он равен 7,7 В.

Положительные ионы, как и электроны, разгоня­ются электрическим полем, но из-за большой массы ско­рость их много меньше. При ударе положительного иона о нейтральную частицу меньшая часть энергии передается на ионизацию, так что ионизация толчком происходит в основном за счет электронов.

Ввиду малой протяженности околокатодной области электроны не набирают скорости, достаточной для иониза­ции ударом. Чаще всего после удара атом переходит в возбужденное состояние (электрон атома переходит на более удаленную от ядра орбиту). Для ионизации возбуж­денного атома требуется меньшая энергия. В результате необходимый потенциал ионизации уменьшается. Такая ионизация называется ступенчатой. При ступенчатой иони­зации необходим многократный удар электронов по атому: на каждый образующийся положительный ион требуются десятки электронов. Поэтому ток около катода, несмотря на наличие положительных ионов, носит электронный ха­рактер.

Образующиеся электроны не создают около катода отрицательного объемного заряда, так как их скорость зна­чительно больше скорости тяжелых положительных ионов. Положительные ионы разгоняются в поле катодного падения напряжения и бомбардируют катод. Благодаря этому температура катода поднимается и достигает точки испа­рения материала электрода. При высоких температурах появляется термоэлектронная эмиссия катода, которая в сильной степени зависит от температуры электрода. Проведенные исследования также показали, что дуга может существовать только за счет автоэлектронной эмиссии, со­здаваемой у катода электрическим полем.

б) Область дугового столба. Энергия, приобретенная заряженными частицами в электрическом поле дугового столба, столь мала, что практически ионизация толчком не происходит.

При большой температуре, которая имеет место в об­ласти дугового столба, скорость частицы возрастает до значения, при котором удар в нейтральный атом приводит к его ионизации. Такая ионизация называется термической. Основным источником ионов и электронов в столбе дуги является термическая ионизация. Чем меньше масса части­цы, тем больше ее скорость движения.

 Таким образом, с ростом давления степень ионизации уменьшается. В связи с этим во многих дугогасящих уст­ройствах (ДУ) электрических аппаратов создается повы­шенное давление газа, что способствует гашению дуги. Очень сильное влияние на ионизацию оказывает темпера­тура. Для большого числа двухатомных газов из-за сту­пенчатой ионизации процесс образования ионов начинается при температурах 6·103 К. Пары металла ионизируются значительно легче. Заметная ионизация начинается уже при температурах 3000 ÷ 4000 К. Поэтому в ДУ необходимы меры против попадания металлических паров электродов.

в) Энергетический баланс дуги. Процесс ионизации и процесс деионизации в значительной степени определя­ются температурой дугового промежутка. Последняя за­висит от количества тепла, выделяемого в дуге и отводи­мого от дуги.

Охлаждение дуги происходит за счет излучения, тепло­проводности и конвекции.

Для открытой дуги, горящей в воздухе, излучением от­дается 15 ÷ 30% выделяемой в дуге энергии. Для дуги, го­рящей в закрытом ДУ, доля тепла, отдаваемого лучеиспу­сканием, меньше.

Отвод тепла за счет теплопроводности газа в значи­тельной степени зависит от его температуры. Так, при тем­пературе 4000 К молекулы водорода диссоциируют на атомы. При этом от дуги отводится большое количество тепла. Внешне этот процесс представляется как резкое уве­личение теплопроводности. Теплопроводность газа сильно зависит от его природы. Так, средняя теплопроводность водорода в 17 раз больше, чем воздуха. Благодаря своей высокой теплопроводности при прочих равных условиях водород способствует более быстрому охлаждению столба дуги. Ток, отключаемый в атмосфере водорода, в 7,5 раза больше, чем в воздухе при том же давлении.

При горении дуги в трансформаторном масле последнее разлагается с выделением водорода, что способствует эф­фективному гашению дуги. В некоторых аппаратах под действием магнитного поля дуга перемещается с большой скоростью относительно воздуха, что приводит к ее ох­лаждению за счет конвекции. Этот вид теплоотдачи наря­ду с теплопроводностью является определяющим для про­цесса гашения.

г) Околоанодная область. Поток электронов из столба дуги устремляется к положительному электроду – аноду. Анод при дуговом разряде не излучает положительных ионов, которые могли бы нейтрализовать электроны. По­этому вблизи анода создается отрицательный объемный заряд, что и вызывает появление околоанодного падения напряжения и повышение напряженности электрического поля. Околоанодное падение напряжения зависит от темпе­ратуры анода, его материала и значения тока.

Электроны разгоняются в поле, образованном отрица­тельным объемным зарядом и анодом. Энергия, приобре­тенная электронами, отдается аноду. Благодаря большой энергии электронов анод нагревается до очень высокой температуры, которая, как правило, выше температуры ка­тода. Мощный поток электронов выбивает из анода элект­роны, которые также участвуют в создании отрицательного объемного заряда.

Высокая температура анода и околоанодная область не оказывают существенного влияния на возникновение и ус­ловия существования дугового разряда. Роль анода сво­дится к приему электронного потока из дугового столба.

Для дуги большого тока околоанодное падение напря­жения столь мало, что им можно пренебречь.

Распределение напряжения, напряженности электриче­ского поля (градиента) и производной, пропорциональной объемному заряду а в дуге, представлено на рис. 8.1.

Падение напряжения у катода составляет 10 ÷ 20 В и за­висит от материала катода и свойств газа, в котором горит дуга. Околокатодное падение напряжения несколько меньше потенциала ионизации газа из-за наличия около катода его паров, у которых потенциал ионизации значительно ниже.

Околоанодное падение напряжения составляет 5 ÷ 10 В. При больших токах околоанодное напряжение уменьшает­ся, в то время как околокатодное напряжение остается по­стоянным.

В некоторых аппаратах низкого напряжения длина дуги невелика. Падение напряжения на столбе дуги мало по сравнению с суммой падения напряжения у катода и ано­да. Такие дуги называются короткими. Условия гашения короткой дуги в значительной степени определяются процессами, происходящими у электродов, и условиями их охлаждения.

В аппаратах высокого напряжения падение напряже­ния на столбе дуги значительно больше околоэлектродных, и последними можно пренебречь. Условия существования таких дуг, называемых длинными, определяются про­цессами в столбе дуги.

 

Рис. 8.1. Распределение напряжения, напряженности электрического

поля и объемных зарядов в электрической дуге

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ ДУГОВОГО РАЗРЯДА
ПРИ ВЫСОКОЙ ПЛОТНОСТИ ГАЗОВОЙ СРЕДЫ

Явление прохождения электрического тока через газ, называемое газовым разрядом, может наблюдаться практически при любых значениях тока. На рис. 8.2 изображена вольтамперная характе­ристика последовательных стадий газового разряда в воздухе при атмосферных условиях.

При несамостоятельном разряде (зона О – В)ток поддерживается за счет внешних ионизаторов (космические лучи, рентгеновские лучи и др.); при самостоятельном разряде (зона В Е)носители электричества возникают в газоразрядном канале непосредственно за счет ионизирующих факторов, присущих газоразрядному каналу.

Между точками О А зависимость и = f (t) следует закону степени трех вторых.

В стадии «насыщения» (А В)все заряды, содержащиеся в про­межутке, достигают электродов. Но так как никакой дополнительной ионизации здесь не возникает, то значительное увеличение напряже­ния не ведет к существенному изменению тока.

За точкой В напряжение становится достаточным для возникно­вения ударной ионизации (под действием сил электрического поля), начинается самостоятельная форма разряда.

Участок В С соответствует стадии пробоя, или «таунсендовской» стадии (по имени Таунсенда, разработавшего математическую теорию этой стадии).

 Наиболее характерные признаки стадии пробоя: ударная ионизация, незначительные пространственные заряды, лавинообразный процесс образования электронов (и ионов). При больших расстоя­ниях между электродами и достаточно высокой плотности газа таунсендовская стадия может перейти в так называемую стримерную стадию пробоя.

Когда мощность источника становится достаточно большой, способной вызвать в цепи токи порядка мА, стадия пробоя перехо­дит в стадию тлеющего разряда (СD).Для тлеющего разряда характерна ударная ионизация, но уже в условиях резко неравномер­ного поля, когда основное падение напряжения приходится на слой у катода. Основной столб разряда в данном случае представляет собой как бы проводник тока, убыль электронов в котором восполняется за счет столкновения наиболее «быстрых» электро­нов с атомами газа. Для тлеющего разряда также ха­рактерно постоянство произ­ведения давления газа на длину околокатодного слоя. При достаточно большом токе тлеющий разряд пере­ходит в дуговой (переходная стадия D Е).

 Дуговой раз­ряд в газовой среде относи­тельно высокой плотности (при атмосферном и более вы­соком давлении) обладает следующими характерными чер­тами:        

1) ясно очерчена граница между дуговым столбом и окружающей средой;

2) высокая плотность тока в дуговом столбе (десятки – сотни А/мм2);

3) высокая температура газа внутри дугового столба, дости­гающая 5000 ÷ 10000 К и более высоких значений. В этих условиях преобладает термическая ионизация газа (см. ниже). При нормаль­ных условиях дуговая стадия разряда (и термическая ионизация) в воздухе практически прекращаются при температурах около 3000 К;

4) высокая плотность тока на катоде и малое падение напряже­ния у катода.

Рис. 8.2. Вольтамперная характеристика газового разряда     

 

Одно время полагали, что характерной особенностью дуги яв­ляется высокая температура катода, однако теперь уже совершенно ясно, что дуговой разряд на металлических электродах может су­ществовать практически и при холодном катоде. На рис. 8.3 приведено изображение дугового столба между металлическими контактами и показано распределение напряжения вдоль него. Как можно видеть, падение напряжения на дуге складывается из трех слагаемых: катодного падения напряжения; падения напряжения в дуговом столбе и анодного падения напряжения.

Общее напряжение на дуге

При условии однородности дугового столба последний член – напряжение на дуговом столбе – может быть представлен как произведение напряженности электрического поля Е на длину канала дуги.

Катодное падение напряжения сосредо­точено на очень небольшом участке дуги, непосредственно примыкающем к катоду (около 0,001 мм при нормальном атмо­сферном давлении). Оно состав­ляет величину порядка 10 ÷ 20 В, следовательно, средняя напря­женность электрического поля у катода достигает величины    порядка 105 В/см и выше. При таких напряженностях выход электронов с поверхности катода может осуществляться в значительной степени за счет автоэлектрон­ной эмиссии. Если материал катода таков, что температура его кипения может превысить 2500 К, то эмиссия электронов с поверх­ности катода может происходить и за счет термических процессов (термоэлектронная эмиссия). При этих условиях выход электронов с катода обеспечивается и при более низких паде­ниях напряжения у катода. В этом случае катодное падение является не прямой причиной выхода электронов с катода, как при автоэлек­тронной эмиссии, а косвенной, обеспечивающей выделение около ка­тода необходимой энергии для подогрева катода.

Возможно и совместное существование термической и автоэлек­тронной эмиссии при нагретом катоде.

Дуга может существовать между металлическими электродами и при холодном катоде. В этом случае имеет место в основном авто­электронная эмиссия.

Возможен и такой механизм выхода электронов с катода, когда за счет высокой удельной плотности энергии в области околокатодного пространства возникает высокая степень термической ионизации газа. При этом электроны уходят в зону Дуговой плазмы, а положительные ионы, падая на катод, забирают электроны из катода, образуя нейтральные атомы. Таким образом создается электрический ток в цепи. Вполне вероятно, что при холодном катоде имеет место совместное действие автоэлектронной эмис­сии и эмиссии за счет термической ионизации в околокатодном про­странстве. Следовательно, каким бы ни был механизм освобождения электронов с катода, при всех условиях у катода должна совершаться работа, т.е. выделяться энергия, что и обеспечивается благодаря катодному падению напряжения.


Дата добавления: 2021-04-24; просмотров: 72; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!