Классификация трансформаторов

Гр.208_Электротехника_4 пара_2-28_

Тема 2.1.1.Принцип действия и устройство трансформатора

ЗАДАНИЕ:

1.Составить конспект (текст, схемы, формулы, таблицы).

Назначение, устройство и принцип действия трансформатора

С целью экономичной передачи электроэнергии на дальние расстояния и распределения ее между разнообразными потребителями появляется необходимость в ее трансформации. Последнее осуществляется с помощью повышающих и понижающих трансформаторов.

Трансформатор — статический электромагнитный аппарат, его действие основано на явлении взаимной индукции, он предназначен для преобразования электрической энергии переменного тока с параметрами U1, I1 в энергию переменного тока с параметрами U2, I2 той же частоты.

Принцип индуктивной связи двух обмоток впервые открыт Фарадеем в 1831 г. В период 1870—1880 гг. был создан однофазный трансформатор с разомкнутым магнитопроводом, а в 1880—1890 г. была осуществлена разработка трансформатора с замкнутым магнитопроводом, который усиливал магнитную связь между обмотками и обеспечивал повышенные технико-экономические показатели трансформатора.

Трансформатор (рис.1) состоит из ферромагнитного магнитопровода 1, собранного из отдельных листов электротехнической стали, на котором расположены две (w1, w2) обмотки, выполненные из медного или алюминиевого провода. Обмотку, подключенную к источнику питания, принято называть первичной, а обмотку, к которой подключаются приемники, - вторичной. Все величины, относящиеся к первичной и вторичной обмоткам, принято соответственно обозначать индексами 1 и 2.

Рис. 1. К пояснению устройства и принципа действия трансформатора

Если первичную обмотку трансформатора с числом витков w1 включить в сеть переменного тока, то напряжение сети U1 вызовет в ней ток I1 и МДС I1w1 создаст переменный магнитный поток Ф. Переменный магнитный поток Ф создаст в обмотке w1 ЭДС Е1, а в обмотке w2 ЭДС Е2. Когда есть нагрузка, электрическая цепь вторичной обмотки оказывается замкнутой и ЭДС Е2вызовет в ней ток I2. Таким образом, электрическая энергия первичной цепи с параметрами U1, I1и частотой f будет преобразована в энергию переменного тока вторичной цепи с параметрамиU2, I2 и f.

Мгновенные значения ЭДС первичной и вторичной обмоток, как следует из явления электромагнитной индукции, имеют выражения

e1 = - w1 dФ/dt, e2 = - w2 dФ/dt,

их действующие значения (при синусоидальном изменении) соответственно равны

E1 = 4,44w1fФm; (8.1)

Е2 = 4,44w2fФm. (8.2)

Разделив значения ЭДС первичной цепи на соответствующее значение ЭДС вторичной цепи, получим

e1

=

E1

=

w1

= n.

e2 E2 w2

(8.3)

Величина n называется коэффициентом трансформации трансформатора. Электрическая энергия из первичной цепи во вторичную в трансформаторе передается посредством переменного магнитного потока, поскольку гальваническая связь между первичной и вторичной обмотками трансформатора отсутствует. Отношение значений ЭДС Е1 и Е2 равно отношению чисел витков первичной и вторичной обмоток.

Для выяснения соотношения между первичным и вто­ричным напряжениями необходимо высказать следующие со­ображения.

Вопервых, кроме основного магнитного потока Ф или просто магнитного потока трансформатора, как далее мы его будем называть, который полностью располагается в ферромагнитном сердечнике и пронизывает все витки первичной и вторичной обмоток, ток первичной обмотки создает магнитный поток рассеяния Фр1. Поток рассеяния Фр1 в отличие от основного охватывает витки только первичной обмотки и, как это видно на рис. 8.1, располагается главным образом в немагнитной среде (воздушном пространстве или трансформаторном масле, окружающем обмотку). Этот поток создает в первичной обмотке ЭДСЕр1. Во-вторых, первичная обмотка обладает определенным активным сопротивлением. Поэтому, как вытекает из уравнения электрического состояния первичной цепи

U1 = - E1 - Ep1 + I1r1, (8.4)

значения напряжения U1 и ЭДС Е1 не равны. ЭДС Е1 меньше напряжения U1 на значение падения напряжения, обусловленное ЭДС Ер1 и активным сопротивлением обмотки.

Однако эта разность невелика, и если ею пренебречь, то можно допустить, что

U1 ≈ - E1, или | U1 | ≈ | E1|, или U1 ≈ - E1.

При работе трансформатора с нагрузкой в его вторичной обмотке действует ток I2. Ток вторичной обмотки участвует в создании основного магнитного потока Ф, а также создает поток рассеяния Фр2, расположенный в немагнитной среде, как Фр1, и наводящий в этой обмотке ЭДСЕр2.

Напряжение U2, как вытекает из уравнения электрического состояния вторичной цепи

U2 = Е2 + Ер2 - I2r2, (8.5)

меньше ЭДС Е2 на значение падения напряжения, обусловленное ЭДС Ер2 и активным сопротивлением обмотки. Однако эта разность невелика, и если ею пренебречь, то можно считать, что

U2Е2.

Рис.2. Условные обозначения однофазного трансформатора

Подставив в уравнение (8.3) вместо Е1 и Е2соответственно напряжения U1 и U2, получим

w1

U1

= n,

w2 U2

откуда следует, что U2 = U1w2/w1 = U1/n

Поэтому можно считать, что коэффициент трансформации трансформатора представляет собой отношение значений первичного напряжения к вторичному. Соотношение между первичным и вторичным токами можно определить из равенства первичной и вторичной мощностей. Действительно, если пренебречь потерями активной мощности в обмотках и реактивной мощностью, обусловленной главным магнитным потоком и потоками рассеяния трансформатора, то

U1I1 = U2I2,

откуда

U1/U2 = I2/I1 = n

и, следовательно,

I2 = I1n.

Однофазные трансформаторы на схемах электрических цепей изображаются так, как это указано на рис 8.2, а — в. Начало и конец первичной обмотки обозначаются большими буквами: начало А, конец X, вторичной обмотки — малыми буквами: начало а, конец х. Предполагается, что направление намотки от начала к концу относительно магнитопровода обеих обмоток одинаковое или по часовой, или против часовой стрелки.

Классификация трансформаторов

Трансформатор представляет собой статический электромагнитный аппарат с двумя (или больше) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

При передаче электрической энергии от электростанции к потребителям сила тока в линии обуславливает потери энергии в этой линии и расход цветных металлов на ее устройство. Если при одной и той же передаваемой мощности увеличить напряжение, то сила тока в такой же мере уменьшится, а следовательно, можно будет применить провода с меньшим поперечным сечением. Это сократит расход цветных металлов при устройстве линии электропередачи и снизит потери энергии в ней.

Электрическая энергия вырабатывается на электростанциях синхронными генераторами при напряжении 11—20 кВ; в отдельных случаях применяют напряжение 30—35 кВ. Хотя такие напряжения являются слишком высокими для их непосредственного использования в производстве и для бытовых нужд, они недостаточны для экономичной передачи электроэнергии на большие расстояния. Дальнейшее повышение напряжения в линиях электропередачи (до 750 кВ и более) осуществляют повышающими трансформаторами.

Приемники электрической энергии (лампы накаливания, электродвигатели и т. д.) из соображений безопасности рассчитывают на более низкое напряжение (110-380 В). Кроме того, изготовление электрических аппаратов, приборов и машин на высокое напряжение связано со значительными конструктивными сложностями, так как токоведущие части этих устройств при высоком напряжении требуют усиленной изоляции. Поэтому высокое напряжение, при котором происходит передача энергии, не может быть непосредственно использовано для питания приемников и подводится к ним через понижающие трансформаторы.

Электрическую энергию переменного тока по пути от электростанции, где она вырабатывается, до потребителя приходится трансформировать 3-4 раза. В распределительных сетях понижающие трансформаторы нагружаются не одновременно и не на полную мощность. Поэтому полная мощность трансформаторов, используемых для передачи и распределения электроэнергии, в 7-8 раз больше мощности генераторов, устанавливаемых на электростанциях.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем с использованием магнитопровода.

Напряжения первичной и вторичной обмоток, как правило, неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного — понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие — для ее распределения между потребителями.

В зависимости от назначения различают

силовые трансформаторы,

измерительные трансформаторы напряжения и трансформаторы тока.

Силовые трансформаторы преобразуют переменный ток одного напряжения в переменный ток другого напряжения для питания электроэнергией потребителей. В зависимости от назначения они могут быть повышающими или понижающими. В распределительных сетях применяют, как правило, трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в напряжение 0,4 кВ. (Основные типы трансформаторов ТМГ, ТМЗ, ТМФ, ТМБ, ТМЭ, ТМГСО, ТМ, ТМЖ, ТДТН, ТРДН, ТСЗ, ТСЗН, ТСЗГЛ и другие.).

Измерительные трансформаторы напряжения – это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях. Благодаря этому измерительные приборы оказываются изолированными от сети, что делает возможным применение стандартных приборов (с переградуированием их шкалы) и тем самым расширяет пределы измеряемых напряжений.

Трансформаторы напряжения используются как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализаций и релейной защиты линий электропередачи от замыкания на землю.

В ряде случаев трансформаторы напряжения могут быть использованы как маломощные понижающие силовые трансформаторы или как повышающие испытательные трансформаторы (для испытания изоляции электрических аппаратов).

Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока.

Поставляются с классом точности: 0,5 ; 0,5S; 0,2; 0,2 S

Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.

Измерительные трансформаторы тока поставляются со следующими кофэфициентами трансформации 5/5, 10/5, 15/5, 20/5, 30/5, 40/5, 50/5, 75/5, 100/5, 150/5, 200/5, 300/5, 400/5, 600/5, 800/5, 1000/5, 1500/5, 2000/5, 2500/5, 3000/5, 5000/5, 8000/5, 10000/5.

На рынке  трансформаторы тока представлены следующими моделями:

ТШЛ-0,66, ТНШ-0,66, ТНШЛ-0,66, ТОЛ 10, ТОЛ 35, ТШЛ 10, ТЛШ 10, ТПЛ 10, ТПЛ 10М, ТПОЛ 10, ТПОЛ 10М, ТОЛК 6, ТОЛК 10, ТВ, ТЛК 10, ТЛМ 10, ТПК 10, ТВЛМ 6, ТВЛМ 10, ТФЗМ 35, ТФЗМ 110 и другие.

Классификация трансформаторов напряжения

Трансформаторы напряжения различаются:

а) по числу фаз — однофазные и трехфазные;

б) по числу обмоток — двухобмоточные и трехобмоточные;

в) по классу точности, т.е. по допускаемым значениям погрешностей;

г) по способу охлаждения — трансформаторы с масляным охлаждением (масляные), с естественным воздушным охлаждением (сухие и с литой изоляцией);

д) по роду установки — для внутренней установки, для наружной установки и для комплектных распределительных устройств (КРУ).

Для напряжений до 6 кВ трансформаторы напряжения изготовляют сухими, т.е. с естественным воздушным охлаждением. Для напряжений выше 6 кВ применяют масляные трансформаторы напряжения.

Трансформаторы внутренней установки предназначены для работы при температуре окружающего воздуха от -40 до + 45°С с относительной влажностью до 80%.


Дата добавления: 2021-04-06; просмотров: 45; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!