Особенности классификация, применение, способы управления и выбор паяльных устройств



ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. И.С.Тургенева»

КАРАЧЕВСКИЙ ФИЛИАЛ

Кафедра «Индустрия электросоединителей, пресс-форм и штампов»

Группа К-31(в)

 

Дисциплина «Основы сборки и монтажа электротехнических изделий»

 

Тема 1: Способы установки и монтажа электрических соединителей

1.1 Объемный монтаж

- методом пайки;

- методом ультразвуковой сварки;

- методом накрутки;

- методом обжимки.

1.2 Особенности технологических процессов пайки

1.3 Оборудование

1.4 Расходные материалы

1.5 Контроль качества монтажа

 

Тема 2: Печатный монтаж методом пайки

2.1 Пайка паяльником

2.2 Пайка волной

2.3 Пайка паяльной станцией

2.4 Пайка в печах с инфракрасным излучением

2.5 Особенности технологического процесса пайки

2.6 Оборудование

2.7 Расходные материалы

2.8 Контроль качества пайки

 

Тема 3: Монтаж электрических соединителей на ленточный провод

3.1 Суть монтажа контактов на ленточный провод

3.2 Схема монтажа контактов на ленточный провод

3.3 Выбор параметров подсоединяемого ленточного провода

3.4 Оборудование

3.5 Контроль качества монтажа

 

Тема 4: Печатный монтаж методом запрессовки

4.1 Центровка и позиционирование контактов относительно отверстий печатной платы

4.2 Запрессовка

4.3 Особенности технологического процесса запрессовки

4.4 Оборудование

4.5 Контроль качества монтажа

 

Литература:

 

1 А.Л.Сафонов, Л.И.Сафонов О некоторых аспектах разработки и производства электрических соединителей

2 ГОСТ 23592

 

 

Тема 2: Печатный монтаж методом пайки

Пайка — технологическая операция, применяемая для получения неразъёмного соединения деталей из различных материалов путём введения между этими деталями расплавленного материала (припоя), имеющего более низкую температуру плавления, чем материал (материалы) соединяемых деталей.

Спаиваемые элементы деталей, а также припой и флюс вводятся в соприкосновение и подвергаются нагреву с температурой выше температуры плавления припоя, но ниже температуры плавления спаиваемых деталей. В результате, припой переходит в жидкое состояние и смачивает поверхности деталей. После этого нагрев прекращается, и припой переходит в твёрдую фазу, образуя соединение.

Прочность соединения во многом зависит от зазора между соединяемыми деталями (от 0,03 до 2 мм), чистоты поверхности и равномерности нагрева элементов. Для удаления оксидной плёнки и защиты от влияния атмосферы применяют флюсы.

Пайка паяльником

Паяльник - ручной инструмент, применяемый при лужении и пайке для нагрева деталей, флюса, расплавления припоя и внесения его в место контакта спаиваемых деталей. Рабочая часть паяльника, обычно называемая жалом, нагревается пламенем (например, от паяльной лампы) или электрическим током.

 

Разновидности

Паяльники с периодическим нагревом

· Молотковые и торцевые паяльники представляют собой массивный рабочий наконечник, закрепленный на относительно длинной металлической рукоятке, длина которой обеспечивает безопасность в обращении с инструментом. Для выполнения нестандартных работ паяльники подобного типа снабжаются фасонными наконечниками. Нагрев этих паяльников осуществляется внешними источниками тепла. Это наиболее старый вид паяльников (известны с античности).

· Дуговой паяльник - нагрев паяльника осуществляется электрической дугой, периодически возбуждаемой между угольным электродом, помещенным внутри паяльника и наконечником. Дуговой паяльник массой 1 кг нагревается до температуры 500°C при напряжении 24 В в течение 3 мин, потребляемая мощность 1,5-2,0 кВт.

Паяльники с постоянным нагревом

· Электропаяльники имеют встроенный электронагревательный элемент, работающий от электросети, от понижающего трансформатора либо от аккумуляторов.

· Газовые - паяльники со встроенной газовой горелкой (горючий газ подаётся из встроенного баллончика со сжиженным газом, или, реже, газ подаётся по шлангу от внешнего источника).

· Паяльники, работающие на жидком топливе - схожи с газовыми, но нагрев осуществляется пламенем сгорающего жидкого топлива.

· Термовоздушные - в них нагрев деталей, расплавление припоя происходит путем обдува их струёй горячего воздуха. В этом он напоминает промышленный фен, но, в отличие от него, используется тонкая струя воздуха.

· Инфракрасные –нагревание осуществляется источником инфракрасного излучения.

Области применения

Электропаяльники малой мощности (5-40 Вт) обычно используются для пайки электронных компонентов при помощи легкоплавких оловянно-свинцовых припоев; это основной инструмент электромонтажника и электромеханика.

Мощные электропаяльники (100 и более Вт) используются для пайки и лужения массивных деталей.

Термостабилизация жала позволяет использовать паяльники большой (50-100 Вт и более) мощности и при пайке электронных компонентов без риска их перегрева - это полезно при работе с многослойными печатными платами, а также при демонтаже многовыводных ИС.

Паяльники для монтажа и ремонта электронных устройств часто изготовляются на низкие рабочие напряжения, от 12 до 36 В. Питают такой паяльник через понижающий трансформатор. Пониженное напряжение значительно снижает вероятность повреждения полупроводниковых электронных компонентов ёмкостными наводками, амплитуда которых на жале обычного паяльника на 220 В достигает десятков, а то и 100-150 вольт, даже при отличной изоляции нагревателя.

Для максимальной защиты от статического электричества и электромагнитных наводок жало паяльника заземляют, уравнивая потенциалы жала, рабочей поверхности, монтируемой конструкции и оператора (для заземления тела человека используется заземляющий браслет).

Следует предостеречь против распространенной ошибки - питания паяльника при работе с электронными устройствами от тиристорного регулятора напряжения - (диммера). Выходное напряжение такого регулятора имеет несинусоидальную форму с крутыми фронтами в моменты открытия тиристора, и следовательно, имеет большой уровень высокочастотных гармоник. Это ведёт к появлению импульсов напряжения большой амплитуды на жале (ёмкостная наводка через ёмкость нагреватель - жало), способных вывести из строя многие полупроводниковые приборы и микросхемы, особенно это относится к приборам с изолированным затвором.

Также возрастает вероятность пробоя изоляции между нагревательным элементом паяльника и жалом, особенно если она слюдяная

 

Пайка волной

Пайка волной применяется только для пайки компонентов в отверстиях плат (традиционная технология), хотя некоторые изготовители утверждают, что с ее помощью можно производить пайку поверхностно монтируемых компонентов с несложной конструкцией корпусов, устанавливаемых на одной из сторон ПП.

Процесс пайки прост. Платы, установленные на транспортере, подвергаются предварительному нагреву, исключающему тепловой удар на этапе пайки. Затем плата проходит над волной припоя. Сама волна, ее форма и динамические характеристики являются наиболее важными параметрами оборудования для пайки. С помощью сопла можно менять форму волны. В настоящее время каждый производитель использует свою собственную форму волны (в виде греческой буквы «омега», Z-образную, Т-образную и др.). Могут варьироваться направление и скорость движения потока припоя, достигающего платы, но они должны быть одинаковы по всей ширине волны. Регулируется также угол наклона транспортера для плат. Некоторые установки для пайки оборудуются дешунтирующим воздушным ножом, который обеспечивает уменьшение количества перемычек припоя. Нож располагается сразу же за участком прохождения волны припоя и включается в работу, когда припой находится еще в расплавленном состоянии на ПП. Узкий поток нагретого воздуха, движущийся с высокой скоростью, уносит с собой излишки припоя, тем самым разрушая перемычки.

Когда впервые появились ПП, с обратной стороны которых устанавливались поверхностные компоненты, их пайка производилась волной припоя. При этом возникло множество проблем, связанных как с конструкцией плат, так и с особенностями процесса пайки, а именно, непропаи и отсутствие галтелей припоя из-за эффекта затенения другими компонентами, преграждающими доступ волны припоя к соответствующим контактным площадкам, а также наличие полостей с захваченными газообразными продуктами разложения флюса, мешающих доступу припоя.

Совершенствование конструкции платы оказалось недостаточным для достижения высокого уровня годных при традиционных способах изготовления изделий с простыми компонентами, монтируемыми на поверхность обратной стороны плат. Потребовалось изменить технологический процесс пайки волной, внедрив вторую волну припоя. Первая волна делается турбулентной и узкой, она исходит из сопла под большим давлением (рис. 1).

Рисунок 1 -  Схема процесса пайки двойной волной припоя.

А – первая волна, В – вторая Т-образная волна.

Турбулентность и высокое давление потока припоя исключают формирование полостей с газообразными продуктами разложения флюса. Однако турбулентная волна все же образует перемычки припоя, которые разрушаются второй, более пологой ламинарной волной с малой скоростью истечения. Вторая волна обладает очищающей способностью и устраняет перемычки припоя, а также завершает формирование галтелей. Для обеспечения эффективности пайки все параметры каждой волны должны быть регулируемыми. Поэтому установки для пайки двойной волной должны иметь отдельные насосы, сопла, а также блоки управления для каждой волны.

Пайка двойной волной припоя применяется в настоящее время для одного типа ПП – с традиционными компонентами на лицевой стороне и монтируемыми на поверхность простыми компонентами (чипами и транзисторами) на обратной. Некоторые компоненты для ТПМК (даже пассивные) могут быть повреждены при погружении в припой во время пайки. Поэтому важно учитывать их термостойкость. Если пайка двойной волной применяется для монтажа плат с установленными на их поверхности компонентами сложной структуры, необходимы некоторые предосторожности. В этом случае следует:

• применять поверхностно монтируемые ИС, не чувствительные к тепловому воздействию;

• снизить скорость транспортера;

• проектировать ПП таким образом, чтобы исключить эффект затенения.

Хорошо разнесенные, не загораживающие друг друга компоненты способствуют попаданию припоя на каждый требуемый участок платы, но при этом снижается плотность монтажа. При высокой плотности монтажа, которую позволяет реализовать ТПМК, с помощью данного метода практически невозможно пропаять поверхностно монтируемые компоненты с четырехсторонней разводкой выводов.

Паяльная станция:

особенности классификация, применение, способы управления и выбор паяльных устройств

Все паяльные станции делятся на две основные группы:

  • контактные — они представляют собой обычные аналоговые паяльники с оловянно-свинцовым или бессвинцовым припоем
  • бесконтактные — в данном случае работа производится за счет нагрева и быстрого нагнетания воздуха или же нагрева инфракрасным излучением

Каждый из этих типов имеет свое конкретное применение. Сегодня многие радиолюбители устанавливают именно бесконтактные паяльные станции, однако право на существование имеют оба указанных выше типа.

Контактные паяльные станции

Самыми простыми, если можно так выразиться, и распространенными паяльными станциями являются контактные. По своему принципу действия они мало чем отличаются от традиционных паяльников, но они лишены их конструктивных недостатков.

Основная проблема при использовании паяльника — это перегрев чувствительных элементов, особенно полупроводниковых. Причиной этого служит невозможность регулирования температуры нагревательного элемента. Паяльник разогревается примерно до 400 градусов, и безопасность пайки обеспечивается краткосрочным контактом жала с припоем.

Контактная паяльная станция оснащена блоком питания, который, в большинстве случаев, обеспечивает гальваническую развязку между цепью питания и нагревательным элементом. С помощью блока питания можно регулировать напряжение на нагревательном элементе, соответственно — изменять температуру нагрева. В большинстве случаев диапазон оптимальной температуры пайки — 250-330 градусов.

 

Рисунок 2 - Паяльная станция AOYUE 936

 

Паяльная станция с антистатическим исполнением и аналоговым управлением предназначена для ремонта электрического и радиооборудования.

Также стоит отметить, что в паяльных станциях присутствует система термостабилизации. Реализована она при помощи ПИД-регуляторов с обратной связью по температуре жала. В момент охлаждения жала (в момент касания жалом припоя) микроконтроллер анализирует соотношение заданной температуры к реальной и стабилизирует ее автоматически.

Мощность «обычных» контактных паяльных станций не превышает 50-60 Вт. Даже с учетом системы термостабилизации использовать их можно только для пайки свинцовыми нетугоплавкими припоями типа ПОС 60. Многие, даже опытные, мастера применяют их в ремонте современных плат, созданных по директиве RoHS с использованием только тугоплавких бессвинцовых припоев. Это в корне неверно. Негативные последствия от таких действий:

  • перегретый радиокомпонент, вследствие завышенной температуры пайки;
  • перегретое жало паяльника, что приводит к резкому сокращению его долговечности;
  • резкое сокращение длительности работы нагревательного элемента;
  • некачественная пайка (холодная пайка);
  • перегрев дорожек на плате.

Рисунок 3 - Контактные паяльные станции

Контактные паяльные станции – это не самые современные агрегаты. Обычно в комплекте к такой паяльной станции идет одно коническое медное жало, однако большинство моделей позволяют расширить комплект и докупить необходимые жала. В итоге паять таким паяльником можно практически что угодно, кроме плат памяти в сложной электронике. При выборе следует обратить внимание на возможность расширения комплекта, если вы хотите получить действительно универсальное устройство.

Контактные паяльные станции могут иметь два типа управления:

  • аналоговое — в этом случае паяльник будет иметь только два положения регуляции – включено и выключено, то есть жало нагревается до нужной температуры и отключается, а после остывания снова начинает нагреваться
  • цифровое — в данном случае устройство сможет поддерживать постоянную температуру, то есть, нагрев и пайка будут более равномерными

Бесконтактные паяльные станции – более совершенные устройства. Они бывают двух видов:

  • воздушные — нагрев производится за счет нагнетания горячего воздуха
  • инфракрасные — нагрев происходит за счет инфракрасного излучения

Выбор паяльной станции такого типа – это органичное и естественное решение для тех, кто хочет идти в ногу со временем. Именно бесконтактные станции сегодня развиваются быстрее всего – производители оснащают свое оборудование новыми дополнительными функциями, которые делают работу более комфортной, а результат – более качественным

 


Дата добавления: 2021-07-19; просмотров: 236; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!