Физико-механические свойства почвы.



К физико-механическим свойствам относятся связность, липкость, пластичность, набухание и спелость почвы.

Связность. Способность почвы противостоять разрывающему усилию называют связностью. Зависит от силы сцепления частиц. Тяжелые почвы, бесструктурные, насыщенные одновалентными катионами, более связны по сравнению с легкими структурными почвами, насыщенными кальцием и магнием. Связность зависит также от влажности почвы и играет существенную роль при ее обработке.

Липкость. Это способность почвы во влажном состоянии прилипать к сельскохозяйственным орудиям или другим предметам. Степень липкости зависит от гранулометрического состава, степени структурности и влажности. При одной итой же влажности липкость увеличивается с возрастанием количества илистых частиц и уменьшением структурности почвы.

Пластичность. Способность почвы изменять форму без распадения на отдельности под влиянием внешних сил и сохранять приданную форму после устранения действия этих сил называют пластичностью. Зависит она от гранулометрического состава, содержания влаги и проявляется при среднем содержании влаги. При переувлажнении почва течет, апри недостаточном увлажнении крошится или ломается.

Набухание. Это способность почвы увеличивать объем при увлажнении. Противоположное ему свойство, проявляющееся при высыхании, называют усадкой. Набухание и усадка зависят от гранулометрического состава и состава обменных катионов. Тяжелые почвы, особенно насыщенные натрием, сильно набухают при увлажнении и садятся при высыхании. Этисвойства крайне неблагоприятны, так как вызывают растрескивание почвы и разрыв корней растений.

Спелость почвы. Имеет существенное значение для установления правильных сроков обработки.

Физической спелостью называют состояние почвы, при котором она легко обрабатывается, не мажется и не разделяется на глыбы, а крошится на комки разной величины. Физическая спелость определяется влажностью почвы, ее связностью и пластичностью.

Биологическая спелость — состояние почвы, при котором активно развиваются микробиологические процессы, сопровождающиеся выделением значительного количества углекислого газа и интенсивным выходом питательных элементов. Состояние биологической спелости тесно связано с физической спелостью и температурой пахотного слоя.

Таким образом, физические свойства играют большую роль в жизни почвы, так как определяют ее водно-воздушный и питательный режимы и условия обработки сельскохозяйственными орудиями.

Водные свойства почвы.

Водные свойства почвы играют важную роль в формировании ее водного режима, под которым понимают совокупность процессов поступления, передвижения, расхода и изменения качественного состояния почвенной влаги. А это является решающим фактором в количественном и качественном обеспечении потребностей культурных гений в воде.

На поступившую в почву воду оказывают влияние сорбционные (молекулярное притяжение), менисковые (капиллярные) и гравитационные силы. Они в значительной мере влияют на многие водные свойства почвы и на ее способность накапливать, удерживать и сохранять влагу и обеспечивать ею возделываемые растения.

Отношение массы содержащейся в почве воды к массе абсолютно сухойпочвы, выраженное в процентах, называют влажностью почвы. Она ничего не говорит о качественном состоянии воды и ее взаимодействии с почвой и доступности растениям, но свидетельствует лишь о количественном наличии воды в почве.

Влагоемкость почвы - это способность почвы удерживать определенное количество влаги. Почвы песчаные обладают очень низкой влагоемкостью, тогда как у глинистых и гумусированных она особенно велика.

В производственных условиях важное значение имеет знание предельной полевой влагоемкости (ППВ), характеризуемой наибольшим количеством воды в полевых условиях, которое способна удерживать почва в своих капиллярах в подвешенном состоянии после стекания гравитационной воды и низком стоянии грунтовых вод. Запас влаги в почве, определяемый предельной полевой влагоемкостью возрастает с увеличением содержания в почве физической глины, органического вещества, коллоидов и оструктуренности почв. Он является основным источникомобеспечения растений водой в период между очередным увлажнением почвы (выпадением осадков, полив и т.п.). На легких песчаных почвахпредельная полевая влагоемкость составляет около 12-15%, на среднесуглинистых - 20-25 и на глинистых и гумусированных - 30-35%.

Полная влагоемкость почвы - наибольшее количество воды, которое почва способна вместить во всех своих порах. Такое состояние в почве наблюдается при быстром снеготаянии, ливневых осадках и т.п. После стекания гравитационной влаги, освободившиеся поры заполняются воздухом, и вновь восстанавливается аэрация почв.

Водопроницаемость почв - способность впитывать и пропускать через себя поступающую сверху воду. Песчаные почвы обладают «провальной» водопроницаемостью и большая часть влаги уходит в грунтовые воды, тогда как суглинистые и глинистые почвы медленно пропускают влагу и долго ее удерживают. Поэтому даже при частых осадках на легких почвах растения испытывают недостаток влаги, а на средне суглинистых и глинистых почвах это может наблюдаться через более продолжительный интервал времени.

Водоподъемная способность характеризуется свойством почвы поднимать влагу по капиллярным промежуткам. На почвах песчаных, где диаметр капиллярных пор велик, высота капиллярного подъема редко превышает 0,5 - 0,8 м, а на среднем суглинке - 2,5 - 3,0 м, на глинистых она может составлять 4,0 - 6,0 м. Однако в случаях, подобных последним, возрастают непроизводительные потери влаги, и усиливается опасность засоления почв в зоне сухих и пустынных степей.

С капиллярностью связана и испаряющая способность почвы, характеризуемая потерей влаги вследствие физического испарения. Ветер и повышение температуры усиливают потери влаги. Почвы распыленные, бесструктурные и плотные больше теряют влаги, чем песчаные. Резко снижается испаряющая способность почв структурных, где капилляры короткие, прерывистые и не образуют сплошной волосяной подъем воды к поверхности почвы. На заплывающих и бесструктурных почвах можно в 2-3 раза сократить потери воды из-за физического испарения, если над капиллярами создать рыхлый мульчирующий слой почвы в 3-4 см с помощью боронования. Такой прием очень эффективен ранней весной и получил название ранне весеннего, или покровного, боронования.

 

Воздушные свойства почвы.

Воздушные свойства почвы, как и ее воздушный режим в значительной мере определяются ее пористостью. Хорошая аэрация, обусловленная активным газообменом между почвой и атмосферой, благоприятна для жизнедеятельности корней растений и почвенных микроорганизмов, образования наиболее доступных растениям окисленных форм минерального питания. Недостаток аэрации снижает содержание в почве кислорода, что нарушает нормальные процессы метаболизма в корнях растений, усиливаются неблагоприятные анаэробные и восстановительные процессы.

Состояния воздушного режима в значительной мере определяются такими свойствами почвы как воздухоемкость и воздухопроницаемость.

Воздухоемкость почвы определяется объемом крупных (некапиллярных и межагрегатных) пор в почве. В мелких же (капиллярных и внутриагрегатных) порах обычно в нормальных полевых условиях содержится влага. Поэтому объем пор почвы, не занятых водой, называют пористостью аэрации. В бесструктурных почвах она невелика и быстро снижается при естественном уплотнении или увлажнении почвы. В структурныхпочвах пористость аэрации быстро восстанавливаться даже посуде обильных осадков. На окультуренных почвах пористость аэрации необходимо поддерживать на уровне 15-30% от объема почвы.

Воздухопроницаемость выражает способность почвы пропускать через себя воздух. На структурных, легких по механическому составу и умеренно увлажненных почвах она хорошо выражена и сильно затруднена на почвах распыленных, плотных и переувлажненных. Нормальная воздухопроницаемость сохраняется при значении пористости аэрации не менее 15-20%.

Тепловые свойства почвы.

Тепловые свойства почвы определяют возможности почвы трансформировать и сохранять тепловую энергию, основным источником которой является солнце.

Теплоемкость - это количество тепла в джоулях, которое необходимо для нагревания 1 г (массовая теплоемкость) или 1 см3 (объемная теплоемкость) почвы на 1° С. Она сильно колеблется не только от соотношения твердой, жидкой и газообразной фазы, но и от состава этих фаз. Так, массовая теплоемкость воды составляет 4,187; кварцевого песка - 0, 821; глины - 0,975; органического вещества - 1,997 и воздуха - 0,001. У нормально увлажненных почв теплоемкость колеблется в пределах 0,7-0,8. С увеличением влажности почвы она быстро возрастает. Поэтому песчаные легко пересыхающие почвы быстро прогреваются («теплые» почвы), чем влажные глинистые («холодные» почвы).

Теплопроводность выражает способность почвы проводить тепло от теплых слоев к холодным. Она составляет у песка 0,039, глины - 0,009, воды - 0,005, органического вещества - 0,001, и воздуха - 0,0002. Поэтому сухие и плотные почвы быстро проводят тепло, но и быстро его теряют. Последнего можно избежать, если верхний слой почвы взрыхлить (боронование, шлейфование и т.п.). Напротив, рыхлые, переувлажненные и богатые органическим веществом почвы медленно прогреваются, но дольше его сохраняют.

Притекающая к поверхности солнечная энергия не вся поглощается почвой (теплопоглощение), а часть ее отражается в пространство и теряется безвозвратно. Эта часть отраженной энергии, выраженной в процентах, и называемой альбедо, характеризует теплоизлучение почвы. Почвы влажные, гумусированные, темноокрашенные больше поглощаютэнергии (альбедо около 8-20%). Почвы легкие по механическому составу и светлоокрашенные значительно меньше поглощают тепла (альбедо 25-40%), тогда как поверхность снежного покрова поглощает наименьшее количество солнечной энергии (альбедо 88-91%).

Таким образом, рассмотренные тепловые свойства почвы позволяют сознательно подходить к оценке как возможных тепловых условий на конкретном поле, так и выбору приемов их регулирования.


Дата добавления: 2021-02-10; просмотров: 160; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!