Жидкокристаллические индикаторы



Эволюция мониторов, экранов и дисплеев как средств отображения информации

Первые мониторы были векторными — в мониторах этого типа электронный пучок создает линии на экране, перемещаясь непосредственно от одного набора координат к другому. Позднее появились мониторы с растровым сканированием. В мониторах подобного типа электронный пучок сканирует экран слева направо и сверху вниз, пробегая каждый раз всю поверхность экрана.

Следующей ступенькой развития мониторов явилось цветное изображение, для получения которого требуется уже не один, а три пучка, каждый из которых высвечивает определенные точки на поверхности дисплея.

По прогнозам экспертов, в будущем будет происходить постепенное слияние мониторов и телевизоров, поэтому привычные экраны мониторов с соотношением величин сторон экрана 4:3, вероятно, будут приведены к стандарту телевидения высокой четкости (ТВЧ, с разрешением 1920 x 1080) и DVD, с соотношением длин сторон изображения 16:9.

 

Средства отображения информации

Технические средства отображения могут быть классифици­рованы следующим образом:

- По типу представляемой информации УОИподразделяются на устройства, реали­зующие отображение: дискретных сигналов, цифровых данных, условных графических образов, мнемосхем, алфавитно-цифровой информации, квазиграфической информации, универсальной графической информации.

-  По способу формирования изображения УОИ подразделяют на устройства дис­кретно-знаковые, дискретно-матричные, функцио­нальные и растровые.

-  По характеру использования средства отображения разделяют на индивидуальные и коллективные (массовые).

- По степени программирования УОИ могут быть разделены на устройства с посто­янными (непрограммируемыми) функциями, устройства с программируемыми функциями и параметрами (гибкие устройства) и устройства с возможностью программной обработки данных (активные или интеллектуальные средства отображения).

- По характеру связи с пользователем средства отображения разделяют на инфор­мирующие, запросно-справочные и диалоговые.

Перечислим в заключение некоторые основные технические па­раметры, характери­зующие УОИ: размер поля отображения; информационная емкость экрана; быс­тродействие; количество и тип отображаемых элементов (при их фик­сации); наличие и объем автономной памяти; эргономические характеристики (разре­шающая способность, яркость, мелькание, цвет и пр.); габаритные размеры и энергетиче­ские показатели.

 

МЕТОДЫ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Монохромные ЭЛТ .

На рис. 1 приведено схематическое изо­бражение монохромной электронно-лучевой трубки с электростатической фокусировкой и электромагнитным от­клонением луча. Сама трубка представляет собой узкий стеклянный цилиндр. Внутри ци­линдра встроен набор электродов, составляющих электронно-оптическую систему, на по­верхности цилиндра расположена пара отклоняющих катушек ОК. Вакуумное пространство внутри трубки, по которому распространяется пучок электронов, может быть разделе­но на три участка.

Экран ЭЛТ покрыт слоем люминофора. На нем создается изо­бражение с требуемой яркостью, временем послесвечения и цветом. Наиболее широкое распространение в монохром­ных трубках получили белый и зеленый цвета.

Цветные ЭЛТ .

ВЭЛТ с теневой маской применяется метод диафрагмирования электронного луча. Маска помещена между тремя электронными пушками и трехцветным люминофором экрана. Она препятствует попаданию каждого луча на участки люмино­фора не соответствующего ему цвета.

На рис. 2 схематически показано расположение маски и экрана в цветной ЭЛТ с так называемым компланарным располо­жением пушек. Каждая из них осуществляет генерацию, фокусировку и ускорение луча. Внутри трубки пуш­ки сориентированы таким образом, что их лучи, рас­пространяясь в одной плоскости под некоторым углом друг к другу и проходя через лю­бое из отверстий в маске, попадают каждый на полоску люминофора только определен­ного цвета. Цветные пятна, возбуж­даемые лучом, благодаря близкому расположению, воспринимаются глазом как одно пятно некоторого производного цвета. Этот цвет зави­сит от пропорций основных цветов и может быть любым в об­ласти видимого спектра. Пропорции можно менять, управляя на­пряжением модулятора.

Рис. 2. Расположение электродов маски и экрана в цветной ЭЛТ с компланарным расположением пушек (К, 3, С - красный, зеленый, синий)

 

Цветные ЭЛТ значительно сложнее в изготовлении, чем мо­нохромные. Они требуют очень точной установки элементов в про­цессе производства. Разре­шающая способность цветных ЭЛТ ограничена количеством отвер­стий в маске.

Сложность конструкции трехпушечных ЭЛТ привела к поискам других методов реа­лизации цветных изображений на экране. Наибольшую известность здесь получили два типа трубок, так называе­мые тринитрон и элмитрон. В ЭЛТ типа «тринитрон» все элек­тронные лучи генерируются с помощью одной пушки. Она имеет три независимых катода и модулятора. В тринитроне также используется щелевая маска, однако удается получить изображение большей яркости. В обоих из описанных типах трубок предельная разре­шающая способность определяется количеством и размерами отверстий в маске. Поэтому интерес представляют цветные трубки типа «элмитрон», в которых маски не использу­ются, а цвет свечения люминофора зависит от глубины проникновения электронного луча и, следовательно, от энергии последнего.

Недостатком является то, что в схеме управления индикатором должен быть преду­смотрен быстродействующий высоковольтный переключатель. С целью избежать этого иногда используются двухпушечные ЭЛТ. Трубки типа «элмитрон» используются в тех­нике отображения, когда необходимо получить высокую разрешающую способность при ограниченном цветном диапазоне.

Запоминающие ЭЛТ

Или ЭЛТ «прямого видения», используются для преобразова­ния однократно подаваемых на отклоняющую систему сигналов в видимое изображение, сохраняемое на экране в течение длительного времени. В таких трубках управляемый электронный пучок не воздействует непосредственно на люминофор экрана, имеющий небольшое время послесвечения, а создает «потенциальный рельеф» изображения на спе­циальной плоской мишени, расположенной внутри трубки.

Конструкция запоминающей ЭЛТ схематично представлена на рис. 3. Запоминаю­щая поверхность состоит из тонкой металлической сетки, на которую со стороны экрана осажден слой диэлектрика. Внутри колбы размещены две электронные пушки: записы­вающая, которая формирует модулируемый и адресуемый отклоняющей системой высо­коэнергетический пучок, и воспроизводящая, в которой создается интенсивный расходя­щийся пучок электронов с невысокой энергией. Специальные кольцевые электроды, рас­положенные на стенках трубки и находящиеся под определенным потенциалом, создают электростатическое поле, благодаря которому медленные электроны двигаются перпенди­кулярно мишени, равномерно распределяясь по ее поверхности.

Рис. 3. Схематическое изображение конструкции запоминающей трубки:

ЗП – записывающая пушка; ВП – воспроизводящая пушка; ОК – отклоняющие ка­тушки; К – коллекторная сетка; С – сетка мишени; Д – диэлектрик; КЭ – кольцевые элек­троды; АЭ – алюминированный экран.

 

Основным преимуществом запоминающей ЭЛТ является простота индикаторов, соз­даваемых на их базе отсутствие мерцания и высокая яркость. Разрешающая способность экрана в них также достаточно высока и определяется размером и количеством отверстий в сетке мишени. Однако важным недостатком индикаторов на запоминающих трубках, ограничивающим их использование во многих областях, является невозможность избира­тельного стирания информации. Применяются они в основном в качестве устройства вы­вода графических данных из машины и в радиолокационных системах.

Распространение в области отображения информации получили два основных типа электролюминесцентных индикаторов (ЭЛИ): построенных на основе порошковых люми­нофоров, возбуждаемых постоянным напряжением, и с использованием люминофоров в виде тонкой пленки, возбуждаемых высокочастотным переменным напряжением.

Основой электролюминесцентного элемента постоянного тока является порошкооб­разный люминофор, кристаллы которого вместе с примесями распределены в связующем веществе. Этот состав наносят на прозрачную пластину с проводящим покрытием (обычно используется слой оксида олова). С другой стороны к люминофору приклады­вают тонкую металлическую пластину (фольгу). Вся конструкция размещена в пластмас­совом корпусе и герметизирована (рис. 4.).

Рис. 4. Конструкция электролюминесцентного элемента постоянного тока:

1 – люминофорный слой; 2 – металлический электрод; 3 – выводные контакты; 4 – герметический корпус; 5 – прозрачный электрод ( ); 6 – стеклянная подложка

 

Важным преимуществом электролюминесцентных элементов является их малая толщина, позволяющая конструировать компактные индикаторы. Управляются они на­пряжениями порядка 50 — 100 В, однако по яркости и контрастности уступают многим другим типам излучающих элементов.

Тонкопленочные индикаторы переменного тока являются наибо­лее перспективными приборами, реализующими принцип электролюминесценции. Слой люминофора разме­щают между слоями диэлектрика, обеспечивающими гальваниче­ское разделение его с электродами (рис. 5.). Все слои создаются с помощью технологии напыления в вакууме на стеклянную подложку. Долговечность таких ЭЛИ значительно выше, чем порошковых, питающее их высокочастотное напряжение составляет 150 — 250 В.

Рис. 5. Структура слоев тонкопленочного электролюминесцентного индикатора пе­ременного тока:

1 – прозрачный электрод; 2 – пленка люминофора; 3 – металлический электрод; 4 – светопоглощающий диэлектрик; 5 – прозрачный диэлектрик; 6 – стеклянная подложка

Светодиодные индикаторы

Светоизлучающие диоды (СИД) представляют собой твердотельные приборы, рабо­тающие на р-п-переходах, образованных в полупроводниковом материале. В их основе лежит принцип инжекционной люминесценции. Изготавливаются СИД в виде дискретных элементов отображения (рис. 6), в виде монолитных полосково-сегментных приборов, а также в виде небольших матриц с - адресацией.

Рис. 6. Конструкция светоизлучающего диода:

1 – полупроводниковый слой p-типа; 2 – прозрачная подложка; 3 – полупроводнико­вый слой п-типа; 4 – керамический корпус; 5 – электрод

В настоящее время промышленностью выпускаются в основном при­боры, излучающие в красном, зеленом и желтом диапазонах при яркостях примерно в 100 кд/м2. Монолитные кристаллы СИД имеют пло­щадь не более 1 – 2 см2, однако уже длительное время ведутся работы по созданию на их базе плоских цветных телевизион­ных экранов.

 

Газоразрядные индикаторы

 

Существуют два основных типа плазменных панелей: постоянно­го тока с внешней адресацией и переменного тока с запоминанием информации. Панели постоянного тока имеют плоскую трехслойную конструк­цию, в которой между двумя стеклянными пласти­нами с нанесенной на их внутреннюю поверхность системой взаимно перпендикулярных полупрозрачных электродов расположена перфорированная изоли­рующая матрица. От­верстия в матрице заполнены газом и разме­щаются в местах пересечения электродов. Свечение возникает при подаче на соответствующую пару электродов напряжений. Для получения устой­чивого изображения необходимо последовательно подавать высоко­вольтное напряжение на требуемые точки.

Конструкция панели переменного тока показана на рис. 7. На двух стеклянных подложках 3 расположен набор параллельных проводников, вертикальных 2 и горизон­тальных 4, покрытых слоем прозрачного диэлектрика 1. Между обкладками с помощью герметизирующей рамки 5 образуется камера, заполненная газовой смесью 6. Наборы проводников взаимно перпенди­кулярны и в точках их пересечения образуются газораз­рядные элементы. При зажигании элемента создается светящаяся точка. Наборы точек обеспечивают отображение необходимой информа­ции. Яркость светящихся точек доста­точно высока и не зависит от размерности матрицы.

Рис. 7. Общий вид (а) и поперечное сечение (б) фрагмента конструкции плазменной панели переменного тока

Ряд важных преимуществ плазменных панелей – плоскостность экрана, высокая разрешающая способность (уже созданы панели с матрицей 1024 1024 точки), возмож­ность работы в непрерывном режиме без мерцания и искажения изображения, хорошая видимость при ярком освеще­нии – делает их одними из наиболее перспективных индика­торов для использования в системах отображения высокой информативности.

Жидкокристаллические индикаторы

Широкое распространение для целей индикации получило ис­пользование в жидких кристаллах так называемого «твист-эффек­та». В ячейке, получаемой в результате запол­нения жидкокри­сталлическим веществом полости между двумя стеклянными пластин­ками, на внутренней поверхности которых нанесены прозрачные электроды (рис. 8.), ориентация молекул постепенно меняется от верхнего слоя к нижнему. При наложении электрического поля молекулы раскручиваются и ориентируются в направлении вектора напряженности электрического поля. Фаза света при прохождении через ячейку в этом слу­чае не меня­ется. Помещая на входе и выходе ячейки пленочные поляризаторы, обеспечивают блоки­ровку света определенной фазы и пропускание его при повороте плоскости поляризации на 90°. Тем самым задаются включенное и выключенное состояния приборов. Малая по­требляемая мощность, плоскостность конструкции и невысокая стоимость делают жидкок­ристаллические индикаторы (ЖКИ) одним из самых удобных средств ото­бражения знаковой информации в малогабаритных электронных устройствах (часы, калькуляторы, измерительные приборы и пр.). Однако широкое применение этих индикаторов ограни­чено рядом принципиальных недостатков. Отметим среди них относительно не­высокий коэффициент контраста (не более 20 в лучших образцах). Этот коэффициент значительно падает при отклонении утла наблю­дения от нормали (обычно допустимый угол обзора не превышает 45°). Жидкокристаллические приборы очень инерционны, время их переклю­чения составляет десятки и даже сотни миллисекунд и зави­сит от температуры.

Рис. 8. Конструкция жидкокристаллического индикатора:

1 – прозрачные электроды; 2 – жидкокристаллическое вещество; 3 – стеклянные пла­стины; 4 – герметизирующая рамка

Серийно выпускаемые ЖКИ вы­полнены в виде единичных знаковых модулей либо в виде неболь­ших табло из наборов этих модулей.


Дата добавления: 2020-12-12; просмотров: 54; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!