ЗАДАЧИ НА НАХОЖДЕНИЕ ПЛОЩАДИ СЕЧЕНИЯ.

Симметрия многогранников

«Симметрия» в переводе с греческого означает «соразмерность» (повторяемость). Симметричные тела и предметы состоят из равнозначных, правильно повторяющихся в пространстве частей. Особенно разнообразна симметрия кристаллов. Различные кристаллы отличаются большей или меньшей симметричностью. Она является их важнейшим и специфическим свойством, отражающим закономерность внутреннего строения.

Симметрияэто закономерная повторяемость элементов (или частей) фигуры или какого-либо тела, при которой фигура совмещается сама с собой при некоторых преобразованиях (вращение вокруг оси, отражение в плоскости).

Понятие симметрии включает в себя такие понятия, как: ось симметрии, центр симметрии и плоскость симметрии.

1) Ось симметрии - воображаемая ось, при повороте вокруг которой на некоторый угол, фигура совмещается сама с собой в пространстве .

2) Центр симметрии - это точка внутри многогранника, в которой пересекаются и делятся пополам прямые, соединяющие одинаковые элементы многогранника (грани, рёбра, углы).

3) Плоскость симметрии делит многогранник на 2 зеркально равные части (Р).

Симметрия в кубе.

Кубу свойственны все виды симметрии.

а) Центр симметрии (центр куба) - точка пресечения диагоналей куба.

 

б) Плоскости симметрии (9): 1) 3 плоскости симметрии, проходящие через середины параллельных ребер; 2) 6 плоскостей симметрии, проходящие через противолежащие ребра.

 

В) Оси симметрии (13):

1) 3 оси, проходящие через центры противолежащих граней;

2) 4 оси симметрии, проходящие через противолежащие вершины;

3) 6 осей, проходящие через середины противолежащих рёбер.

(3) Симметрия в параллелепипеде.

а) Центр симметрии - точка пересечения диагоналей прямоугольного параллелепипеда.

б) Плоскость симметрии. 3 плоскости симметрии, проходящие через середины параллельных рёбер.

 

в) Оси симметрии. 3 оси симметрии, проходящие через точки пересечения диагоналей противолежащих граней

(4) Симметрия в призме.

1) Симметрия прямой призмы. Одна плоскость симметрии, проходящая через середины боковых рёбер.

Симметрия правильной призмы.

а) Центр симметрии. При чётном числе сторон основания центр симметрии - это точка пересечения диагоналей правильной призмы.

б) Плоскости симметрии: 1) плоскость, проходящая через середины боковых рёбер; 2) при чётном числе сторон основания - плоскости, проходящие через противолежащие рёбра.

1)          2)

в) Ось симметрии: а) при чётном числе сторон основания - ось симметрии проходит через центры оснований; б) оси симметрии, проходящие через точки пресечения диагоналей противолежащих боковых граней.

(5) Симметрия в пирамиде.

а) Плоскости симметрии: при четном числе сторон основания — а) плоскости, проходящие через противолежащие боковые ребра, и б) плоскости, проходящие через медианы, проведенные к основанию противолежащих боковых граней.

б) Ось симметрии: при четном числе сторон основания — ось симметрии проходит через вершину правильной пирамиды и центр основания.

 

Сечения многогранников

Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

Следом называется прямая, по которой плоскость сечения пересекает плоскость любой из граней многогранника.

Итак, задача состоит в построении пересечения двух фигур: многогранника и плоскости. Это могут быть: пустая фигура (а), точка (б), отрезок (в), многоугольник (г). Если пересечение многогранника и плоскости есть многоугольник, то этот многоугольник называется сечением многогранника плоскостью.

Будем рассматривать только случай, когда плоскость пересекает многогранник по его внутренности. При этом пересечением данной плоскости с каждой гранью многогранника будет некоторый отрезок. Таким образом, задача считается решенной, если найдены все отрезки, по которым плоскость пересекает грани многогранника.

 

Сечения куба:

Треугольник, четырехугольник, шестиугольник.

Методы построения сечений

 а) Метод следов заключается в построении следов секущей плоскости на плоскость каждой грани многогранника. Построение сечения многогранника методом следов обычно начинают с построения так называемого основного следа секущей плоскости, т.е. следа секущей плоскости на плоскости основания многогранника.

б) Метод вспомогательных сечений построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь ввиду, что построения, выполняемые при использовании этого метода, зачастую получаются “скученными”. Тем не менее в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.

 

Метод следов и метод вспомогательных сечений являются разновидностями аксиоматического метода построения сечений многогранников плоскостью.

в) Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

 

А теперь на примере решения задач рассмотрим метод следов.

 

Задача 1. Построить сечение призмы ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R (точки указаны на чертеже ).

Решение.

Построим след секущей плоскости на плоскость нижнего основания призмы. Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ.

Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S1, принадлежащую следу.

Аналогично получаем точку S2 пересечением прямых QR и BC.

Прямая S1S2 - след секущей плоскости на плоскость нижнего основания призмы.

Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D. Аналогично получаем TU и RT.

PQRTU – искомое сечение.

 

Задача 2.

 

Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки M, N, P (точки указаны на чертеже ).

 

Решение.

Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проодящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.

Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.

Так как точка M также принадлежит плоскости сечения и пересекает прямую АА1 в некоторой точке Х.

Точки X и N лежат в одной плоскости грани АА1D1D, соединим их и получим прямую XN.

Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A1B1C1D1, параллельную прямой NP. Эта прямая пересечет сторону В1С1 в точке Y.

Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

ЗАДАЧИ НА НАХОЖДЕНИЕ ПЛОЩАДИ СЕЧЕНИЯ.

№1 SABCD – четырехугольная пирамида, в основании которой лежит квадрат ABCD, а две боковые грани SAB и SAD представляют собой прямоугольные треугольники с прямым углом ∠A. Найдите площадь сечения пирамиды плоскостью α, если SA=AB=a.

Решение:

сначала построим сечение по условию задачи.

1)Пусть AC∩BD=O. Две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Заметим, что т.к. ∠SAB=∠SAD=90∘⇒SA⊥(ABC). Проведем в плоскости SAC прямую OK∥SC. Т.к. O – середина AC, то по теореме Фалеса K – середина SA. Через точку K в плоскости SAB проведем KM∥SB (следовательно, M – середина AB). Таким образом, плоскость, проходящая через прямые OK и KM, и будет искомой плоскостью. Необходимо найти сечение пирамиды этой плоскостью. Соединив точки O и M, получим прямую MN. Т.к. α∥(SBC),то α пересечет плоскость SCD по прямой NP∥SC (если NP∩SC≠∅, то α∩(SBC)≠∅, что невозможно ввиду их параллельности). Таким образом, KMNP – искомое сечение, причем KP∥AD∥MN⇒ это трапеция.

2)Т.к. все точки K,M,N,P – середины отрезков SA,AB,CD,SD соответственно, то: а) MN=AD=a б) KP=1/2AD=a/2 в) KM=1/2SB=a /2 Заметим, что по теореме о трех перпендикулярах SB⊥BC⇒KM⊥MN. Таким образом, KMNP – прямоугольная трапеция. SKMNP=(KP+MN)* KM/ 2 =3 a2/8

Ответ:3 a2/8

№2 Найди площадь сечения прямой призмы, проходящей через середины ребер, если =120°, АВ=5 см, ВС=3см и наибольшая из площадей боковых граней равна 35см2 .

Решение:

боковая грань прямой призмы является прямоугольником.

Площадь каждой боковой грани равна произведению высоты призмы на сторону основания.

То есть большая боковая грань содержит большую сторону основания.

По условию =120°, – тупой, а поскольку напротив большей стороны лежит больший угол, то большей стороной основания будет сторона АС. Вычислим длину стороны АС по теореме косинусов.

Получим, что длина стороны АС=7см.

Зная большую сторону основания и площадь наибольшей боковой грани призмы, длину высоты призмы вычислить нетрудно.

Получим, что длина высоты призмы равна .

Найдем площадь основания, а оно равно площади сечения, по формуле .

Мы воспользуемся второй формулой. Получим, что площадь основания равна .

Ответ: 15 /4 см2

№3 На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ:QB=1:2. Точка P — середина ребра AS.

Найдите площадь сечения DPQ, если площадь сечения DSB равна 6.

Решение:

пусть сторона основания пирамиды равна 3а, а высота пирамиды равна h. Тогда площадь сечения DSB равна

S=BD*SO/2= 3 =6

откуда ah=2 .

Площадь сечения DPQ равна

Ответ:

№4

Дана правильная треугольная пирамида SABC с вершиной S. Через середину ребра AC и точки пересечения медиан граней ASB и CSB проведена плоскость. Найдите площадь сечения пирамиды этой плоскостью, если AB=21,AS=12 .

Решение:

пусть LK∩SO=H. Тогда по теореме о трех перпендикулярах HK⊥AC как наклонная (HO⊥(ABC),OK⊥AC как проекция). Следовательно, и LK⊥AC.

Тогда SALC=AC⋅LK/2 Рассмотрим △SKB: BK=AB⋅ /2=21 /2⇒cosB=7 /12 .

Тогда по теореме косинусов для △KLB: KL2=729/4⇒KL=27/2

Значит, SALC=567/4=141,75

Ответ : 141,75

№5

Дана правильная четырехугольная призма ABCDA1B1C1D1. На ребре AA1 отмечена точка K так, что AK : KA1 = 1 : 2. Плоскость α проходит через точки B и K параллельно прямой AC. Эта плоскость пересекает ребро DD1 в точке M, АВ=4, АА1=6. Найдите площадь сечения.

Решение:

По теореме о трех перпендикулярах прямые BM и AC перпендикулярны, а значит, прямые BM и KL перпендикулярны. Площадь четырехугольника, диагонали которого взаимно перпендикулярны, равна половине произведения диагоналей. Найдем их: KL=AC=4 как диагональ квадрата, лежащего в основании призмы, тогда

по теореме Пифагора.

Тогда

Ответ: 8

 

 


Дата добавления: 2021-02-10; просмотров: 207; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!