Внешние запоминающие устройства.



Клавиатура.

Клавиатура представляет собой набор переключателей, объединенных в матрицу. Ее работа основана на использовании механизма прерываний. При нажатии на клавишу устройство клавиатуры вырабатывает управляющий сигнал, условно называемый «Нажатие на клавишу» и информационный сигнал, представляющий собой номер нажатой клавиши. При отпускании клавиши клавиатура вырабатывает управляющий сигнал, условно называемый «Отпускание клавиши» и информационный сигнал «Номер клавиши». Управляющий сигнал «Нажатие на клавишу» , в конечном счете, поступает в процессор, который в это время занят выполнением какой-либо программы. При поступлении этого сигнала процессор приостанавливает выполнение текущей программы, сохраняет все параметры ее выполнения и начинает выполнять специальную программу получения информации с клавиатуры. Программа получает номер нажатой клавиши (скэн-код) и по этому номеру определяет код символа клавиши из таблицы символов (коды ASCII или расширенные коды). Код символа записывается в специальное место памяти, которое называется буфером ввода с клавиатуры. Эта область памяти позволяет разместить в ней ограниченное количество кодов. После выполнения этих действий программа получения информации с клавиатуры организует некоторую временную паузу. Если за это время не поступает сигнал «Отпускание клавиши» , то программа записывает в буфер еще один код символа нажатой клавиши и снова повторяет паузу. Этот процесс повторяется до тех пор, пока не поступит сигнал «Отпускание клавиши» или не закончится место в буфере. В последнем случае программа генерирует звуковой сигнал. При получении сигнала «Отпускание клавиши» работа программы получения информации завершается, а процессор восстанавливает параметры выполнения текущей программы и продолжает ее выполнение. Таким образом, управляющий сигнал «Нажатие на клавишу» прерывает выполнение текущей программы до завершения обработки этого сигнала, а сам сигнал называется прерыванием (или запросом на прерывание).

Сканеры.

Сканерами называютсяустройства для анализа исходного изображения (оригинала), его оцифровки и сохранения с целью последующей обработки и вывода. Следует подчеркнуть, что сканер оцифровывает графическую информацию, даже если такой информацией является обычный текст. Распознавание символьной информации производится программным путем с помощью

 


программ оптического распознавания образов (начертания) символов текста. Примерная схема ручного сканера представлена на рисунке. Все элементы, показанные на схеме, имеют линейный размер в направлении, перпендикулярном плоскости чертежа, равный или превышающий ширину полосы сканирования. Источник света 1 через систему зеркал подсвечивает оригинал 4. Цилиндрическая линза 2 фокусирует изображение в виде узкой линии с переменной по ширине полосы сканирования освещенностью и подает

его на специальное устройство 3, которое называется прибором с зарядовой связью (ПЗС). ПЗС представляет собой полупроводниковую микросхему, содержащую множество светочувствительных ячеек, которые преобразуют падающий на них свет в электрические заряды. Величина накопленного в ячейке заряда связана с освещенностью данной ячейки. Чем светлее данная область изображения, тем больший заряд накапливается в соответствующих ячейках ПЗС и наоборот. Величина электрического заряда может меняться непрерывно, т. е. это аналоговая величина. Для преобразования ее в цифровую форму в сканерах используют аналого-цифровые преобразователи.

Количество светочувствительных элементов в ПЗС определяет горизонтальную разрешающую способность (разрешение) сканера. Так, например, если в спецификации сканера указано «оптическое разрешение 2500 dрi (точек/дюйм)», то это означает, что ПЭС-линейка способна зафиксировать 2500 пикселов на дюйм в горизонтальном направлении (короткая сторона планшетного сканера).У сканера есть и вертикальная разрешающая способность. При пошаговом перемещении оптического блока по вертикали (вдоль длинной стороны стола сканера), ПЗС-линейка за каждый шаг фиксирует одну строку. Количество строк на один дюйм, зафиксированных по вертикали, называется вертикальным разрешением. Таким образом, число пикселей на дюйм, которое ПЗС-линейка может фиксировать поперек направления перемещения оптического блока (фактически, определяется числом фоточувствительных элементов), является горизонтальным разрешением. Число раз, которое оптический блок останавливается, чтобы ПЗС-линейка могла зафиксировать очередную строку пикселей, является вертикальным разрешением. Именно поэтому в спецификации сканера часто указывается такое значение разрешения, как, например, 600х1200 dрi. Первое число — это горизонтальное разрешение, а второе - вертикальное разрешение.

Цветные сканеры отличаются от черно-белых наличием отдельных оптических систем для основных цветов.

Манипулятор мышь.

5
7
2
6
4
3
 
2
1
                                  

 

 

 


        Принцип действия оптико-

             механической мыши.

Многие действия при работе на ПЭВМ нецелесообразно выполнять только с помощью клавиатуры. Особенностью многих WINDOWS приложений является активное использование манипулятора мышь для указания какого-либо объекта на экране монитора, его передвижения, изменения размеров и других функций.

Первый манипулятор «мышь» был создан Дагом Энгельбертом в 1964-м году для перемещения по экрану дисплея курсора и различных объектов. Однако широкого применения он не получил. Только в 1983г. компания Apple начала серийный выпуск персональных компьютеров с интерфейсом, изначально ориентированным на применение собственной оригинальной разработки – мыши. Для IBM-совместимых компьютеров мышь стала применяться с 1990г., когда появилась оболочка WINDOWS 3.0.

Почти все мыши снабжены двумя или тремя кнопками, которые программируются для выполнения различных действий.

Принцип действия наиболее распространенных оптико-механических манипуляторов показан на рисунке. Покрытый резиной металлический шар 1 при качении без проскальзывания по гладкой поверхности (обычно по специальному коврику для мыши) передает вращение за счет сил трения двум роликам 2 и 4. Оси вращения этих роликов взаимно перпендикулярны, что позволяет разложить угловую скорость вращения шара на две составляющие: фронтальную, которая передается на ролик 2 при движении шара в плоскости чертежа, и боковую, которая передается на ролик 4 при движении перпендикулярно плоскости чертежа. На оси каждого ролика имеется стробоскопический диск с одинаковыми отверстиями, расположенными с равным шагом по краю диска. На рис. диск на фронтальном ролике обозначен позицией 3, а на боковом - 5. Каждый диск имеет по две оптических системы, состоящих из миниатюрного источника света 6 и фотоприемника 7. Луч света через отверстия в диске попадают на фотоприемник, всякий раз, когда ось луча совмещается с центром отверстия. Ось луча второй оптической системы в этот момент перекрыта диском. На рис. вторая оптическая система для бокового диска и обе системы для фронтального диска не показаны, чтобы не загромождать рисунок.

По частоте электрических импульсов, генерируемых фотоприемниками можно определить скорость движения мыши, а по порядку их следования - направление перемещения мыши. Электрические импульсы, вместе с сигналами от нажатия кнопок мыши обрабатываются ее электронной схемой и передаются в компьютер, где с помощью специальной системной программы - драйвера мыши, пересчитываются в линейное перемещение указателя мыши на экране монитора.

В 90-х годах стали выпускаться оптические мыши первого поколения. Использовать их можно было только на специальных ковриках-планшетах. Поверхность планшета, изготовленная из светоотражающего материала, была покрыта мелкой сеткой вертикальных и горизонтальных линий. Линии одного направления были синего цвета, а перпендикулярные им – черного цвета. Внутри мыши устанавливаются две пары «светодиод – фотодиод», причем в одной из них применялся светодиод с красным излучением, а в другой - инфракрасный. Свет видимого диапазона поглощается синими линиями, а инфракрасное излучение – черными линиями. Таким образом, каждая из оптопар реагировала только на перемещение манипулятора в «своем» направлении, формируя последовательность электрических импульсов, на основе которых и определялся пройденный путь по каждому направлению.

Второе поколение оптических мышей появилось в 1999г. Работа была основана на использовании миниатюрной видеокамеры, в качестве светочувствительного элемента которой использовался специальный сенсор. Эта видеокамера за одну секунду делала 1500 снимков находящейся под мышью поверхности, а полученные изображения передаются в специализированный процессор. Для освещения поверхности напротив сенсора установлен источник света (обычно красный светодиод). Анализируя изменения в поступающих изображениях, специализированный процессор определяет направление перемещения манипулятора и вычисляет пройденное расстояние. Имеются и другие модели.

Монитор.

Монитор предназначен для визуального отображения информации на экране электронно-лучевой трубки.

Любое изображение на экране состоит из множества дискретных точек люминофора, называемых пикселами. Электронный луч периодически сканирует весь экран, образуя на нем близколежащие строки развертки. Этот шаблон называется растром. По мере движения луча по строкам видеосигнал, подаваемый на модулятор, изменяет яркость светового пятна и образует изображение.

Принцип формирования растра у цветного монитора такой же, как и у монохромного. В основу получения цветного изображения положены два свойства цветового зрения:

1.трехкомпонентность цветового восприятия. Это означает, что все цвета могут быть получены путем смешения трех световых потоков – красного, зеленого и синего. Цветовой оттенок результирующей смеси зависит только от соотношения интенсивностей смешиваемых цветов. Поэтому для формирования цветного изображения используется метод аддитивного смешения цветов.

2.Пространственное усреднение цвета. Суть заключается в следующем. Если на рисунке имеются близко расположенные цветные детали, то с определенного расстояния мы не можем идентифицировать их цвета. Вся группа будет казаться окрашенной в один цвет, оттенок которого определяется на основании первого свойства. Этот факт позволяет формировать цвет одного пиксела из цветов трех рядом расположенных люминофорных зерен.

Таким образом, на экран цветного монитора нанесен люминофор трех основных цветов: красного, зеленого и синего, и имеются 3 электронные пушки, которые должны испускать электроны на соответствующие зерна люминофора. Чтобы электроны попадали в пятна соответствующего цвета, в ЭЛТ устанавливают специальные фокусирующие сетки: теневые маски или апертурные решетки.

(Жидкокристаллические мониторы по книге)

Принтеры.

Большинство применяемых принтеров используют растровую графику. Растром в полиграфии называют цветное или черно-белое изображение, состоящее из мельчайших точек красителя, расположенных с постоянным шагом и образующих регулярную структуру. Растровое строение черно-белой газетной иллюстрации видно невооруженным глазом из-за большого шага между точками типографской краски. Чтобы заметить растровое строение высококачественного цветного отпечатка необходимо уже использование лупы с 2-х или лучше 4-х кратным увеличением. Оттенки серого цвета на черно-белых изображениях получаются за счет изменения размеров точек черной типографской краски при неизменном шаге между точками. Чем крупнее точки, тем более темным кажется цвет. На цветных изображениях используется тот же принцип, но растр образуют точки уже не одного цвета, а нескольких основных цветов. Основными цветами называют такой минимальный набор цветов, который может передать при их смешении в разных пропорциях всю цветовую гамму, включая белый и черный. Примером может служить сочетание голубого (Cyan), пурпурного (Magenta) и желтого (Yellow) цветов. К этой палитре обычно добавляют черный (BlacK) цвет для усиления насыщенности изображения. Рассмотрим три наиболее распространенные технологии получения изображения на бумаге.

Матричные принтеры.

Изображение получается как совокупность точек, образующихся на бумаге как следы от удара по красящей ленте иголок печатающей головки. Количество иголок

     
 
 Принцип действия матричного          принтера.

в печатающей головке может быть разным, но наибольшее распространение получили головки с 9 и 24 иглами. При их одновременном ударе на бумаге отпечатывается матрица с элементами в виде точек, из которых и строится изображение. На рисунке показан принцип действия матричной печати. Бумага 1 протягивается между подающим резиновым валиком 2 и прижимным валиком 9. Красящая лента 3 на рисунке показана своим поперечным сечением. Чтобы не загромождать рисунок, на нем показана толь

ко одна игла, а ее размеры сильно увеличены. Игла 8 удерживается возвратной пружиной 7, магнитный сердечник 6 при этом входит в катушку электромагнита 5. При подаче импульсного напряжения определенной полярности на обмотку катушки, в ней возникает магнитное поле, взаимодействующее с магнитным полем сердечника и выталкивающее его из катушки вместе с иглой, которая ударяет по бумаге через красящую ленту. Головка движется с малым шагом в направлении перпендикулярном плоскости рисунка, печатая следующий элемент изображения на строке, до тех пор, пока не будет распечатана вся строка. Далее вал 2 проворачивается на требуемый угол и печатается следующая строка. Принтеры, поддерживающие цветную печать, снабжены цветной красящей лентой 3 и механизмом вертикального перемещения ленты, с тем, чтобы под иглами головки находился участок ленты требуемого цвета.

Матричные принтеры обеспечивают невысокие затраты на печать при среднем качестве вывода символьных данных и низком качестве графической информации.

Струйные принтеры.

В одно и то же время независимо друг от друга HP и Canon разработали технологию термической печати с помощью чернил. Они вывели на рынок свои разработки под марками IncJet — термоструйная (НР) и BubbleJet — пузырьковоструйная (Canon). Несмотря на то, что скорость и качество печати с тех пор существенно выросли, а все современные принтеры печатают теперь в цвете, основополагающие принципы печати с течением времени почти не изменились.

Наряду с упомянутыми термоструйными технологиями используется и еще одна механическая технология печати, основанная на применении пьеэоэлементов. Ее можно встретить лишь в принтерах фирмы Epson.

Современный струйный принтер работает следующим образом: шаговый мотор протягивает через принтер бумагу; одновременно с этим поперек листа в горизонтальном направлении движется печатающая головка, приводимая в движение тем же шаговым мотором. Через микроотверстия, которые называются соплами, на бумагу выпрыскиваются чернила. В результате согласованного движения бумаги и печатающей головки, в нужное время и в нужное место «выстреливающей» строго определенное количество капель, на бумаге возникает изображение.

Рассмотрим, чем отличается термическая печать от пьезоэлектрической.

При термической печати чернила из сопла выталкиваются за счет быстрого нагревания чернил. Для этого в канале каждого сопла имеется термоэлемент (резистор) размером примерно 30х30 мкм. Когда к нему прикладывается напряжение, он моментально разогревается до температуры примерно 300°С. Это приводит к возникновению парового пузырька в канале сопла и скачкообразному повышению давления в нем, которое можно сравнить с микровзрывом. Он-то и выбрасывает из сопла каплю чернил.

После того как паровой пузырек вытолкнул каплю из сопла, она со скоростью 54 км/ч устремляется на бумагу. В этот момент напряжение перестает подаваться на термоэлемент, в канале сопла возникает разрежение, которое засасывает очередную порцию чернил, выстреливаемую в следующий момент. Весь процесс — от прикладывания напряжения к термоэлементу до засасывания очередной порции чернил и готовности к следующему «выстрелу» — длится менее 80 микросекунд. Величина этого промежутка и определяет скорость печати головки, то есть максимальное количество капель, выдаваемых ею за единицу времени.

В 1984 году, появились первые принтеры Epson на пьезоэлементах. Электромеханические печатающие головки на пьезоэлементах имеют сложную конструкцию и требуют больших затрат при изготовлении, чем термоструйные, производство которых из кремниевых пластин обходится намного дешевле. Впрочем, эти затраты оправдываются большим сроком эксплуатации. Сегодня практически только Epson производит принтеры с печатающими головками на пьезокристаллах. Они не нагревают чернила, следовательно, внутри сопел не образуется «нагар», как это происходит при термической печати. Фактически пьезоголовку можно сравнить с миниатюрным механическим насосом.

Из самого названия становится понятно, что главную роль в печатающей головке данного типа играют пьезокристаллы. Они имеют свойство деформироваться при прикладывании к ним электрического напряжения. Механическая деформация кристалла используется для создания в сопле давления, необходимого для выталкивания чернил. В каждое сопло устанавливается пьезокристалл в форме диска. В зависимости от полярности (плюс или минус) приложенного напряжения этот диск изгибается либо в одном, либо в другом направлении. При этом пьезокристалл давит на мембрану, которая, в свою очередь, выталкивает из сопла чернила. Процесс деформации длится всего пять микросекунд, что позволяет добиться очень высокой скорострельности» печатающей головки и производительности принтера в целом.

 

Лазерные принтеры.

В отличие от струйных принтеров, принимающих и печатающих изображение построчно, лазерный принтер предварительно готовит к печати сразу всю страницу. Вот почему он должен иметь оперативную память большого объема. Когда вы посылаете на печать рисунок, он сначала «переводится» на нужный язык, используемый принтером. Затем принтер преобразовывает полученные данные в растровое изображение, и выводит на печать.

За перенос тонера на бумагу отвечает светочувствительный барабан (фотобарабан), поверхность которого покрыта слоем специального материала, например селеном. Предварительно при помощи коротрона или вала первичной зарядки он заряжается отрицательным зарядом. Чтобы обеспечить первичный заряд фотобарабана, к коротрону прикладывается высокое напряжение, в результате чего вокруг него возникает мощное поле, сообщающее заряд. Использование вместо коротронов вала первичной зарядки позволяет исключить необходимость создания полей высокого напряжения, что предотвращает возникновение ядовитого озона. Такое решение снижает срок службы фотобарабана, поскольку вал зарядки должен входить с ним в контакт, тем самым изнашивая поверхность.

Селен обладает следующей особенностью: там, куда попадает луч света, рисующий изображение, заряд нейтрализуется, причем граница между заряженными и нейтрализованными участками остается достаточно резкой. Источниками излучения являются светодиоды, или лазер, который направляет свой луч на фотобарабан через призму и систему зеркал, таким образом формируя изображение.

Тонер, используемый в лазерных принтерах, содержит частички железа и также имеет отрицательный заряд. Он переносится на фотобарабан магнитным валиком и прилипает только к нейтрализованным участкам, как бы проявляя невидимое изображение. Для того чтобы изображение перенеслось на бумагу, она должна иметь положительный заряд. Его сообщает листу бумаги заряжающий вал, находящийся под напряжением. После этого при вращении фотобарабана на положительно заряженный лист бумаги переносится отрицательно заряженный тонер и формируется изображение. Однако процесс печати еще не завершен, так как тонер не закреплен на листе. Процесс фиксации происходит в блоке термофиксации, где бумага подвергается кратковременному нагреву до температуры около 200°С. При этом смолы, содержащиеся в тонере, расплавляются и надежно прилипают к листу. Тончайшие волоски, через которые проходит бумага на выходе из принтера, снимают с нее остаточный заряд и нейтрализуют листы, чтобы они не слипались друг с другом.

Цветные лазерные принтеры имеют конструкцию (несмотря на некоторое сходство) намного сложнее, чем черно-белые. Разница заключается в том, что цветной принтер работает с четырьмя цветами, а это значит, что для каждого из них должен быть как минимум один картридж. Соответственно фотобарабан или лента переноса освещаются четырежды по одному разу для каждого цвета.

Внешние запоминающие устройства.

Внешние запоминающие устройства (ВЗУ) определяют один из основных ресурсов компьютера - объем внешней памяти для длительного хранения программного обеспечения и данных. Поскольку практически вся информация хранится и накапливается в этих устройствах, то их называют накопителями.

К основным характеристикам ВЗУ обычно относят:

1. максимальный объем хранимой информации;

2. скорость передачи информации;

3. среднее или максимальное время доступа.

Все эти характеристики во многом определяются одной – плотностью записи информации на магнитном носителе.


Дата добавления: 2021-01-21; просмотров: 49; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!