Границы применимости физических законов и теорий

Роль Эксперимента и теории в процессе познания природы. Моделирование физических явлений и процессов. Научные гипотезы. Физические законы. Физические теории. Границы применимости физических законов и теорий. Принцип соответствия. Основные элементы физической картины мира.

Физика – одна из наук, изучающих природу. Свое название физика получила от греческого слова «фюзис», что в переводе означает «природа». Поначалу физикой называли науку, которая рассматривала любые природные явления. Впоследствии же круг изучаемых физикой явлений был достаточно четко обозначен. Что же называют явлениями природы? Явления природы – это изменения, которые постоянно в ней происходят.

Среди физических явлений прежде всего необходимо назвать:

· механические, которые связаны с движением тел. Физика не только рассматривает и описывает движение, но и объясняет причины, по которым тело начинает или прекращает движение, движется или покоится;

· тепловые, обусловленные внутренним строением вещества (изучает термодинамика);

· электромагнитные;

· световые.

Благодаря важным открытиям развивается не только сама физика, но и другие естественные науки: химия, астрономия, биология и др. Физика – одна из основ естественных наук. Изучение физики имеет важнейшее значение и для развития техники: люди получили возможность сконструировать самолеты и космические корабли, электронные приборы, компьютерную технику и многое другое.

Многие свои знания люди получают из наблюдений. Ученые-физики также используют в своей работе метод наблюдений. Часто применяют и другой научный метод – опыт. В этом случае обдуманно, с определенной целью создают условия для протекания того или иного явления и затем изучают его. Опыт – важнейший источник физических знаний.

 

Физический опыт или эксперимент – это такое исследование явления (чаще всего воспроизведенного в лаборатории), в котором все воздействия на исследуемую систему, влияющие на данное явление, поддаются учету. Чаще всего эксперимент сопровождается измерением тех или иных физических величин, установлением связи между этими величинами. Все физические измерения производятся с ограниченной точностью, что ставит предел степени подробности информации, получаемой из опыта. Поэтому при каждом физическом измерении указывается не только его результат, но и точность, с которой этот результат получен. Только в пределах точности измерений можно сравнивать результаты разных опытов друг с другом и с соответствующими предсказаниями теории. В науке и технике разработана целая теория – теория ошибок, которая устанавливает правила расчета экспериментальных ошибок. С элементами этой теории мы познакомимся в лабораторном практикуме по физике.

Теоретическая и экспериментальная физика тесно связаны между собою. Экспериментальная физика дает информацию об изучаемом явлении, теоретики эту информацию анализируют и создают теорию этого явления. Иногда теория создается, исходя из общих представлений о свойствах материи, в отсутствии экспериментальных фактов. В любом случае справедливость теории проверяется экспериментально.

Физический закон есть постоянно действующая при данных условиях связь между явлениями или физическими величинами, характеризующими эти явления. Физический закон обычно имеет строгую формулировку, часто выражается аналитически в виде соотношения между физическими величинами. Каждый физический закон имеет определенную область применения. Физические законы, имеющие наиболее обширные области применения, называются фундаментальными законами (законы сохранения импульса и энергии, законы Ньютона, закон Кулона).

Гипотеза – предварительное научное предположение о механизме и взаимосвязи (законах) явлений. Гипотеза требует экспериментальной проверки и доказательства. При построении гипотезы велика роль мышления и интуиции ученого. Если гипотеза прошла проверку, она становится теорией.

Теория – система научных положений и законов, которая дает качественное и количественное объяснение целой области явлений природы с единой точки зрения. В современной физике такими теориями являются классическая механика, молекулярно-кинетическая теория, общая и специальная теории относительности, квантовая механика, классическая электродинамика, квантовая электродинамика и т. д.

Физи́ческое модели́рование — метод экспериментального изучения различных физических объектов или явлений, основанный на использовании модели, имеющей ту же физическую природу, что и изучаемый объект.

Физи́ческая моде́ль — физическое представление системы, объекта или процесса с целью их исследования, то есть это представление с помощью другого физического, реального объекта, имеющего в том или ином аспекте схожую динамику поведения.

Метод заключается в создании лабораторной физической модели явления в уменьшенных масштабах и проведении экспериментов на этой модели. Выводы и данные, полученные в этих экспериментах, распространяются затем на явление в реальных масштабах.

Метод применяется при следующих условиях:

· Исчерпывающе точного математического описания явления на данном уровне развития науки не существует, или такое описание слишком громоздко и требует для расчётов большого объёма исходных данных, получение которых затруднительно.

· Воспроизведение исследуемого физического явления в целях эксперимента в реальных масштабах невозможно, нежелательно или слишком затратно (например, цунами).

Метод может дать надёжные результаты, лишь в случае соблюдения геометрического и физического подобия реального явления и модели.

Границы применимости физических законов и теорий

Все физические законы и теории являются приближением к действительности, поскольку при построении теорий используется определенная модель явлений и процессов. Поэтому как законы, так и теории имеют определенные границы применимости.

Например, классическая механика, основанная на трех законах Ньютона и законе всемирного тяготения, справедлива только при движении тел со скоростями, намного меньшими скорости света. Если же скорости тел становятся сравнимыми со скоростью света (например, удаленные от нас космические объекты или элементарные частицы в ускорителях), предсказания классической механики становятся неправильными. Тут в «игру» вступает специальная теория относительности, созданная в начале 20-го века Эйнштейном.

Второй пример: поведение мельчайших частиц вещества — так называемых элементарных частиц, а также строение атома не могут быть поняты в рамках классической механики: оказалось, что явления, происходящие на очень малых расстояниях и в очень короткие промежутки времени, находятся вне границ ее применимости. И в начале 20-го века для объяснения атомных явлений трудами нескольких ученых была создана квантовая механика.

Третий пример: хорошо знакомая вам из курса физики основной школы геометрическая оптика, основанная на представлении о световых лучах, прекрасно согласуется с опытом, если размеры предметов, с которыми взаимодействует свет, намного больше длины световой волны. Но если размеры предметов сравнимы с длиной световой волны или намного меньше ее, вступает в силу волновая теория света, в основе которой лежит представление о световых волнах.

 

Физическая картина мира – совокупность физических теорий, существующих на данном этапе развития физики и объясняющих все известные явления с единой концептуальной точки зрения. По мере развития физики, наблюдения новых явлений и закономерностей существования материи физические картины мира сменяют друг друга. Каждая последующая картина включает в себя предыдущую как частный случай, правильно объясняющую определенный круг явлений. История

1. Механическая картина мира.

2. Электродинамическая картина мира.

3. Квантово-полевая картина мира.

Для каждой физической картины мира характерны: 1) основополагающие, мировоззренческие взгляды на устройство материального мира; 2) основные физические принципы; 3) основные понятия; 4) способы описания движения материи; 5) теоретические идеализации (материальная точка, сила – идеализация взаимодействия, абсолютно твердое тело, идеальный газ, точечный заряд, электромагнитное поле).

Для выражения количественных закономерностей в физике широко применяется математический аппарат (математика). Он является по сути дела языком современной физики. При этом развитие физики стимулирует развитие тех или иных разделов математики (векторный характер физических величин – векторная алгебра; непрерывность пространства и времени – дифференциальное и интегральное исчисления; понятие поля в физике – математическая теория поля и т.д.)


Дата добавления: 2021-01-21; просмотров: 1029; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!