Технологии 5G New Radio (5G NR)



Для того, чтобы удовлетворить всё возрастающие требования к мобильной связи, для 5G были разработаны технологии, объединённые под общим названием «новое радио 5G», 5G New Radio (5G NR). По сравнению с радио-интерфейсом в сетях 4G, 5G NR имеет несколько важных преимуществ.

Разработка 5G NR велась практически «с ноля», с учётом требований к сетям 5G и с применением лучших технологий, которые будут доступны к моменту полномасштабного развёртывания сетей 5G. Таким образом, в 5G NR используются новейшие технологии модуляции, образования форм волн (waveforms) и технологий радиодоступа RAT (Radio Access Technology), которые, в т.ч., будут обеспечивать высокую скорость передачи данных и удлинение срока службы батарей пользовательских устройств 5G.

Рисунок 11. Основные требования стандарта 3GPP (Источник: ITU, Nokia, Qualcomm).

Предварительные требования к технологии 5G NR появились в стандарте 3GPP Release 15, утверждённом в декабре 2017, и ожидается, что окончательный вариант будет утверждён в декабре 2019 г.

Основные отличительные особенности радио-технологии 5G NR – следующие:

§ Добавление новых диапазонов радио-спектра, согласно требованиям к скорости передачи сигналов, числа устройств, роста трафика многочисленных приложений 5G. Новые диапазоны 5G NR лежат в пределах от 2,5 до 40 ГГц. Ведутся обсуждения об использовании спектра до 100 ГГц.

§ Оптимизированная технология OFDM (Orthogonal frequency-division multiplexing — мультиплексирование с ортогональным частотным разделением каналов). Эта технология уже была успешно применена в 4G/LTE-A, а также в последних версиях Wi-Fi.

Формирование лучей (Beamforming). Это технология, которая лишь в последние годы перешла от концепции к реализации, и которая способна реализовать многие преимущества 5G. Beamforming даёт возможность направлять луч радиоволн от базовой станции на определённые устройства, как движущиеся, так и неподвижные, без влияния на другие лучи, направленные на те же устройства.

Рисунок 12. Формирование лучей Beamforming (источник: Analysys Mason).

§ MIMO (Multiple Input Multiple Output). MIMO – Метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, который уже применялся в Wi-Fi и 4G, в 5G был значительно усовершенствован, в частности, в многопользовательском режиме MU-MIMO (Multi-User MIMO) в базовых станциях 5G gNnodeB (gNB), антенны которых состоят из матрицы излучающих элементов. Это даёт возможность усиливать уровень сигнала для конкретного пользователя, в то же время минимизируя влияние данного сигнала на других пользователей.

§ Технологии совместного использования спектра (Spectrum sharing ). Многие спектры радиочастот, соответствующим образом распределённые, часто не используются эффективно. Для решения этой задачи были разработаны технологии Spectrum sharing.

§ Унифицированное межчастотное взаимодействие (Unified design across frequencies ). Поскольку в 5G NR добавлено множество новых частотных диапазонов, важно обеспечить интерфейс взаимодействия при переходе канала с одной частоты на другую при хендовере между базовыми станциями.

Маленькие соты (Small cells). Уплотнение сетевого покрытия ведёт к тому, что число базовых станций должно увеличиваться. Поэтому было предложено решение Small Cells – titybt ythtрешение недорогих, простых в установке и обслуживании базовых станций небольшой мощности. Их можно развешивать на мачтах уличного освещения, на стенах домов и других объектах. Сеть 5G способна эффективно координировать их работу, перераспределяя нагрузку между антеннами.

Рисунок 13. Решение small cells (слева), по сравнению с обычной базовой станцией Macro BTS в сети предыдущих поколений.

При этом можно использовать распределённые антенные системы DAS (Distributed Antenna System) фактически «закрывая» одной или несколькими базовыми станциями многоэтажные здания. Небольшие антенны с радио-блоками можно располагать практически в каждом помещении, обеспечивая наилучшее качество связи.

Рисунок 14. Распределённые антенные системы DAS и единая базовая станция, обслуживающая здание целиком.

Единую инфраструктуру базовых станций и DAS могут использовать несколько операторов связи одновременно.

 

Архитектура опорной сети (Core Network) 5G

Особенность архитектуры сети 5G состоит в том, что традиционное понятие «архитектура сети», основанной на аппаратных решениях, в сети 5G теряет актуальность.

Поэтому 5G чаще называют не сетью, а системой, или «платформой», под которой имеется в виду платформа программная, а не аппаратная. Если сети 1/2/3/4G строились на базе аппаратных решений (оборудования), то платформа 5G строится на базе программных решений, в частности, программно-конфигурируемых сетей SDN (Software Defined Network), а также виртуализации сетевых функций NFV (Network Function Virtualization).

Функции 5G реализуются в виртуальных программных функциях VNF (Virtual Network Function), которые работают в инфраструктуре NFV). Различие между этими похожими по звучанию понятиями состоит в том, что VNF – это функция, а NFV – это технология. В свою очередь, NFV реализуется в физической инфраструктуре дата-центров (data center, DC, центр обработки данных, ЦОД), на базе стандартного коммерческого оборудования и программ COTS (Commercial Off The Shelf). Оборудование COTS включает лишь три вида стандартных, относительно недорогих устройств – сервер (вычислительное устройство), коммутатор (сетевое устройство) и система хранения данных (устройство хранения).

Рисунок 15. Переход к виртуальным платформе SDN/NFV в 5G (Источник: HPE, TAdviser)

Таким образом, оборудование традиционных сетей мобильной связи заменяется на программные сущности, работающие в дата-центрах на стандартных серверах и виртуальных машинах VM (virtual machines).

Для реализации программных функций, кроме виртуальных машин, также будут использоваться программные контейнеры (containers), а также программная архитектура микросервисов (microservice)

Распределённая архитектура сети мобильного доступа D-RAN (Distributed RAN) в сетях 4G постепенно эволюционирует к централизованной архитектуре C-RAN (Centralized RAN).

В архитектуре 5G функции опорной сети реализуются в центральном облаке Central Cloud (Cloud RAN), на виртуальных машинах VM.

Важную роль в развитии сетей 5G будут играть также граничное облако (Edge Cloud), в частности, технология MEC (Mobile Edge Cloud), а также «туманное облако» (Fog Cloud).

Виртуализация сети на базе NFV/SDN необходима также для полезной функции 5G: логической сетевой нарезки (Network Slicing).

Рисунок 16. Общая архитектура сети 5G (источник: ЦПИКС).

Технология Network Slicing позволяет на базе единого объёма (пула) сетевых ресурсов производить логическое разделение сетей для различных типов услуг 5G, которым требуются различные технологии радиодоступа RAT (Radio Access Technology), с различными характеристиками сред передачи данных. Это, например, услуги:

§ Высококачественное видео UHD

§ Голосовые услуги (5G Voice)

§ Интернет вещей с большим количеством датчиков, сенсоров и исполнительных устройств (Massive IoT)

§ Интернет вещей для критичных приложений, таких, например, как беспилотный транспорт (V2X), электронная медицина (Mission Critical IoT)

§ и многие другие.

Все эти услуги, предоставляемые на базе технологии Network Slicing работают на единой физической инфраструктуре дата-центров центрального и граничного облака, а также «туманной» инфраструктуры (Fog Computing), необходимой для Massive IoT и Промышленного Интернета Вещей IIoT (Industrial IoT).

Это даёт возможность многократного использования однажды созданной программно-аппаратной инфраструктуры, а также гибкое переназначение её наличных ресурсов. Кроме того, такой подход позволяет снизить не только капитальные затраты на строительство сети, но и операционные затраты на её обслуживание.

 


Дата добавления: 2021-01-21; просмотров: 223; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!