Кластерная архитектура параллельных компьютеров



Кластерные компьютерные системы. Суперкомпьютеры. Основные подходы к созданию и область применения. Методики сравнения производительности компьютеров

 

 

Кластерные системы являются развитием параллельных систем. Чтобы проказать место кластерных систем среди остальных типов параллельных архитектур вычислительных систем нужно привести их классификацию . Параллельные системы могут быть класифицированы по различным критериям.

С аппаратной точки зрения, основным параметром классификации паралелльных компьютеров является наличие общей (SMP) или распределенной памяти (MPP). Нечто среднее между SMP и MPP представляют собой NUMA-архитектуры, где память физически распределена, но логически общедоступна.

Симметричные мультипроцессорные системы

SMP система состоит из нескольких однородных процессоров и массива общей памяти. Один из часто используемых в SMP архитектурах подходов для формирования масштабируемой, общедоступной системы памяти, состоит в однородной организации доступа к памяти посредством организации масштабируемого канала память-процессоры:

 

рис.1

 

Каждая операция доступа к памяти интерпретируется как транзакция по шине процессоры-память. Когерентность кэшей поддерживается аппаратными средствами.

В SMP каждый процессор имеет по крайней мере одну собственную кэш-память (а возможно, и несколько).

Можно сказать, что SMP система - это один компьютер с несколькими равноправными процессорами. Все остальное - в одном экземпляре: одна память, одна подсистема ввода/вывода, одна операционная система. Слово "равноправный" означает, что каждый процессор может делать все, что любой другой. Каждый процессор имеет доступ ко всей памяти, может выполнять любую операцию ввода/вывода, прерывать другие процессоры и т.д.

Недостатком данной архитектуры является необходимость организации канала процессоры-память с очень высокой пропускной способностью.

Массивно-параллельные системы

Массивно-параллельная система MPP состоит из однородных вычислительных узлов, включающих в себя:

· один или несколько центральных процессоров (обычно RISC)

· локальную память (прямой доступ к памяти других узлов невозможен)

· коммуникационный процессор или сетевой адаптер

· жесткие диски и/или другие устройства В/В

 

К системе могут быть добавлены специальные узлы ввода-вывода и управляющие узлы. Узлы связаны через некоторую коммуникационную среду (высокоскоростная сеть, коммутатор и т.п.)

Системы с неоднородным доступом к памяти NUMA

NUMA (nonuniform memory access) в отличие от привычной SMP архитектуры с разделяемой памятью представляет собой несколько отдельных процессоров, каждый из которых, кроме собственного кэша, обладает также локальной памятью:

рис.2

В подобной архитектуре процессор и модули памяти тесно интегрированы, следовательно, скорость доступа к локальной памяти гораздо выше, чем к памяти “соседнего” процессора. Подсистемы ввода-вывода могут быть частью каждого узла или консолидированы на выделенных узлах ввода-вывода. Если во всей системе поддерживается когерентность кэшей, то такую архитектуру называют cc-NUMA.

Проще всего охарактеризовать NUMA-систему, представив себе большую систему SMP, разделенную на несколько частей, эти части связаны коммуникационной магистралью, подключенной к системным шинам, и каждая часть включает собственную основную память и подсистему ввода/вывода. Это и есть NUMA: большая SMP, разбитая на набор более мелких и простых SMP. Основной проблемой NUMA является обеспечение когерентности кэшей. Аппаратура позволяет работать со всеми отдельными устройствами основной памяти составных частей системы (называемых обычно узлами) как с единой гигантской памятью.

Кластерная архитектура

Кластер - это связанный набор полноценных компьютеров, используемый в качестве единого ресурса. Под понятием "полноценный компьютер" понимается завершенная компьютерная система, обладающая всем, что требуется для ее функционирования, включая процессоры, память, подсистему ввода/вывода, а также операционную систему, подсистемы, приложения и т.д. Обычно для этого годятся персональные компьютеры или параллельные системы, которые могут обладать архитектурой SMP и даже NUMA. Кластеры являются слабосвязанными системами, связи узлов используется одна из стандартных сетевых технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. Поэтому они являются более дешевой в построении модификацией MPP архитектуры.

Кластерная архитектура параллельных компьютеров

 

Общие принципы

Как уже было сказано раньше вычислительный кластер — это совокупность компьютеров, объединенных в рамках некоторой сети для решения одной задачи (рис.3), которая для пользователя представляется в качестве единого ресурса. Такую концепцию кластера впервые предложила и реализовала в начале 80-х корпорация Digital Equipment, которая и по сей день развивает эту технологию

Понятие "единый ресурс" означает наличие программного обеспечения, дающего возможность пользователям, администраторам и прикладным программам считать, что имеется только одна сущность, с которой они работают - кластер. Например, система пакетной обработки кластера позволяет послать задание на обработку кластеру, а не какому-нибудь отдельному компьютеру. Более сложным примером являются системы баз данных. Практически у всех производителей систем баз данных имеются версии, работающие в параллельном режиме на нескольких машинах кластера. В результате приложения, использующие базу данных, не должны заботиться о том, где выполняется их работа. СУБД отвечает за синхронизацию параллельно выполняемых действий и поддержание целостности базы данных.

Компьютеры, образующие кластер, — так называемые узлы кластера — всегда относительно независимы, что допускает остановку или выключение любого из них для проведения профилактических работ или установки дополнительного оборудования без нарушения работоспособности всего кластера.

 

 

рис.3

В качестве вычислительных узлов в кластере обычно используются однопроцессорные персональные компьютеры, двух- или четырехпроцессорные SMP-серверы. Каждый узел работает под управлением своей копии операционной системы, в качестве которой чаще всего используются стандартные операционные системы: Linux, NT, Solaris и т.п. Состав и мощность узлов может меняться даже в рамках одного кластера, давая возможность создавать неоднородные системы. Выбор конкретной коммуникационной среды определяется многими факторами: особенностями класса решаемых задач, необходимостью последующего расширения кластера и т.п. Возможно включение в конфигурацию специализированных компьютеров, например, файл-сервера, и, как правило, предоставлена возможность удаленного доступа на кластер через Internet.

Из определения архитектуры кластерных систем следует, что она включает в себя очень широкий спектр систем. Рассматривая крайние точки, кластером можно считать как пару ПК, связанных локальной 10-мегабитной сетью Ethernet, так и вычислительную систему, создаваемую в рамках проекта Cplant в Национальной лаборатории Sandia: 1400 рабочих станций на базе процессоров Alpha, связанных высокоскоростной сетью Myrinet.

Таким образом видно, что различных вариантов построения кластеров очень много. При этом в архитектуре кластера большое значение имеют используемые коммуникационные технологии и стандарты. Они во многом определяют круг задач, для решения которых можно использовать кластеры, построенные на основе этих технологий.

Целью создания кластерных систем является создание дешевых высокопроизводительных параллельных вычислительных систем. Один из первых проектов, давший имя целому классу параллельных систем – кластер Beowulf [2] – возник в центре NASA Goddard Space Flight Center для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проект Beowulf начался летом 1994 года, и вскоре был собран 16-процессорный кластер на процессорах Intel 486DX4/100 МГц. На каждом узле было установлено по 16 Мбайт оперативной памяти и по 3 сетевых Ethernet-адаптера. Эта система оказалась очень удачной по отношению цена/производительность, поэтому такую архитектуру стали развивать и широко использовать в других научных организациях и институтах.

Ведущие производители микропроцессоров: Sun Microsystems, Dell и IBM придерживаются одинаковой точки зрения на будущее отрасли суперкомпьютеров: на смену отдельным, независимым суперкомпьютерам должны прийти группы высокопроизводительных серверов, объединяемых в кластер. Уже сегодня распределенные кластерные системы опережают современные классические суперкомпьютеры по производительности. Проанализировав итоги работ, выполненных в рамках проекта Beowulf, можно прийти к следующему выводу: найденные решения позволяют самостоятельно собрать высокопроизводительный кластер на базе стандартных для ПК компонентов и использовать обычное программное обеспечение. Среди самых крупных экземпляров нельзя не отметить 50-узловой кластер в CESDIS, включающий 40 узлов обработки данных (на базе одно- и двухпроцессорных плат Рentium Рro/200 МГц) и 10 масштабирующих узлов (двухпроцессорная плата Рentium Рro/166 МГц). Соотношение стоимость/пиковая производительность в таком кластере представляется очень удачным. Вопрос в том, насколько эффективно удается распараллелить приложения - иными словами, какова будет реальная, а не пиковая производительность. Над решением этой проблемы сейчас и работают участники проекта.

 

 

 


Дата добавления: 2021-01-21; просмотров: 92; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!