Численность работников различных категорий, их заработная плата и доходы (в условных единицах)



№  п/п Категория работников Число работни-ков Заработ-ная плата Суммар-ные доходы
1 Низкоквалифицированные рабочие 40 100 4000
2 Высококвалифицированные рабочие 30 200 6000
3 Инженеры и служащие 25 300 7500
4 Менеджеры 4 1000 4000
5 Генеральный директор (владелец) 1 18500 18500
6 Всего 100   40000

 

     Первые три строки в табл. 2.8 вряд ли требуют пояснений. Менеджеры - это директора по направлениям, а именно, по производству (главный инженер), по финансам, по маркетингу и сбыту, по персоналу (по кадрам). Владелец сам руководит предприятием в качестве генерального директора. В столбце "заработная плата" указаны доходы одного работника соответствующей категории, а в столбце "суммарные доходы" - доходы всех работников соответствующей категории.

     Фонд оплаты труда составляет 40000 единиц, работников всего 100, следовательно, средняя заработная плата составляет 40000/100 = 400 единиц. Однако эта средняя арифметическая величина явно не соответствует интуитивному представлению о "средней зарплате". Из 100 работников лишь 5 имеют заработную плату, ее превышающую, а зарплата остальных 95 существенно меньше средней арифметической. Причина очевидна - заработная плата одного человека - генерального директора - превышает заработную плату 95 работников - низкоквалифицированных и высококвалифицированных рабочих, инженеров и служащих, вместе взятых.

     Ситуация напоминает описанную в известном рассказе о больнице, в которой 10 больных, из них у 9 температура 40 0С, а один уже отмучился, лежит в морге с температурой 0 0С. Между тем средняя температура по больнице равна 36 0С - лучше не бывает!

     Из сказанного ясно, что не всегда целесообразно использовать среднее арифметическое. Его можно порекомендовать лишь для достаточно однородных совокупностей (без больших выбросов в ту или иную сторону).

     А какие средние стоит применять для описания заработной платы? Вполне естественно использовать медиану. Для данных табл. 2.8 медиана - среднее арифметическое 50-го и 51-го работника, если их заработные платы расположены в порядке неубывания. Сначала идут зарплаты 40 низкоквалифицированных рабочих, а затем - с 41-го до 70-го работника - заработные платы высококвалифицированных рабочих. Следовательно, медиана попадает именно на них и равна 200. У 50-ти работников заработная плата не превосходит 200, и у 50-ти - не менее 200, поэтому медиана показывает "центр", около которого группируется основная масса исследуемых величин. Еще одна средняя величина - мода, наиболее часто встречающееся значение. В рассматриваемом случае это заработная плата низкоквалифицированных рабочих, т.е. 100. Таким образом, для описания зарплаты имеем три средние величины - моду (100 единиц), медиану (200 единиц) и среднее арифметическое (400 единиц). Для наблюдающихся в реальной экономике распределений доходов и заработной платы справедлива та же закономерность: мода меньше медианы, а медиана меньше среднего арифметического.

     Для чего при разработке управленческих решений используются средние величины? Обычно для того, чтобы заменить совокупность чисел одним числом, чтобы сравнивать совокупности с помощью средних.

     Пусть, например, Y1, Y2,...,Yn - совокупность оценок экспертов, "выставленных" одному объекту экспертизы (например, одному из вариантов стратегического развития фирмы), Z1, Z2,...,Zn - второму (другому варианту такого развития). Как сравнивать эти совокупности? Очевидно, самый простой способ - по средним значениям.

     А как вычислять средние? Известны различные виды средних величин: среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое. Напомним, что общее понятие средней величины введено французским математиком первой половины ХIХ в. академиком О. Коши. Оно таково: средней величиной является любая функция f(X1, X2,...,Xn) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X1, X2,...,Xn, и не больше, чем максимальное из этих чисел. Все перечисленные выше виды средних величин являются средними по Коши.

     При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с условием инвариантности выводов, принятом как основное требование в ТИ). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.

     Пусть f(X1, X2,...,Xn) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

f(Y1, Y2,...,Yn) < f(Z1, Z2,...,Zn).

Тогда согласно ТИ для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g из группы допустимых преобразований в соответствующей шкале было справедливо также неравенство

f(g(Y1), g(Y2),...,g(Yn)) < f(g(Z1), g(Z2),...,g(Zn)).

т.е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть выполнено для любых двух совокупностей Y1, Y2,..., Yn и Z1, Z2,...,Zn и, напомним, любого допустимого преобразования g. Средние величины, удовлетворяющие сформулированному условию, назовем допустимыми (в соответствующей шкале). Согласно ТИ только допустимыми средними можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.

     С помощью математической теории, развитой в монографии [3], удается описать вид допустимых средних в основных шкалах. Сразу ясно, что для данных, измеренных в шкале наименований, допустимых средних нет, поскольку допустимые в этой шкале преобразования - а ими являются все взаимно однозначные преобразования - могут как угодно перемешать значения усредняемых величин.

 


Дата добавления: 2021-01-21; просмотров: 28; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!