Мир РНК как предшественник современной жизни



Гипотеза мира РНК

К XXI веку теория Опарина—Холдейна, предполагающая изначальное возникновение белков, практически уступила место современной гипотезе мира РНК. Толчком к её разработке послужило открытие рибозимов — молекул РНК, обладающих ферментативной активностью и поэтому способных соединять в себе функции, которые в настоящих клетках в основном выполняют по отдельности белки и ДНК, то есть катализирование биохимических реакций и хранение наследственной информации. Таким образом, предполагается, что первые живые существа были РНК-организмами без белков и ДНК, а прообразом их мог стать автокаталитический цикл, образованный рибозимами, способными катализировать синтез своих собственных копий. Сахара, необходимые для синтеза РНК, в частности, рибоза, обнаружены в метеоритах и наверняка присутствовали в то время на Земле.

Мир полиароматических углеводородов как предшественник мира РНК

Гипотеза мира полиароматических углеводородов

Гипотеза мира полиароматических углеводородов пытается ответить на вопрос, как возникли первые РНК, предлагая вариант химической эволюции от полициклических ароматических углеводородов до РНК-подобных цепочек.

Альтернативные концепции

Панспермия

Согласно теории панспермии, предложенной Ю. Либихом, в 1865 году немецким ученым Германом Эбергардом Рихтером и окончательно сформулированной шведским учёным Аррениусом в 1895 году, жизнь могла быть занесена на Землю из космоса. Наиболее вероятно попадание живых организмов внеземного происхождения с метеоритами и космической пылью. Это предположение основывается на данных о высокой устойчивости некоторых организмов и их спор к радиации, глубокому вакууму, низким температурам и другим воздействиям. Однако до сих пор нет достоверных фактов, подтверждающих внеземное происхождение микроорганизмов, найденных в метеоритах. Но если бы даже они попали на Землю и дали начало жизни на нашей планете, вопрос об изначальном возникновении жизни оставался бы без ответа.

Фрэнсис Крик и Лесли Оргел предложили в 1973 году другой вариант — управляемую панспермию, то есть намеренное «заражение» Земли (наряду с другими планетными системами) микроорганизмами, доставленными на непилотируемых космических аппаратах развитой инопланетной цивилизацией, которая, возможно, находилась перед глобальной катастрофой или же просто надеялась произвести терраформирование других планет для будущей колонизации[23]. В пользу своей теории они привели два основных довода — универсальность генетического кода (известные другие вариации кода используются в биосфере гораздо реже и мало отличаются от универсального) и значительную роль молибдена в некоторых ферментах. Молибден — очень редкий элемент для всей Солнечной системы. По словам авторов, первоначальная цивилизация, возможно, обитала возле звезды, обогащённой молибденом.

Против возражения о том, что теория панспермии (в том числе управляемой) не решает вопрос о зарождении жизни, они выдвинули следующий аргумент: на планетах другого неизвестного нам типа вероятность зарождения жизни изначально может быть намного выше, чем на Земле, например, из-за наличия особенных минералов с высокой каталитической активностью.

В 1981 году Ф. Крик написал книгу «Life itself: its origin and nature», в которой он более подробно, чем в статье, и в популярной форме излагает гипотезу управляемой панспермии.

Академик РАН А. Ю. Розанов, глава комиссии по астробиологии в Российской академии наук, считает, что жизнь на Землю была занесена из космоса.

 

 

Строение и форма клетки (морфология клетки)

     

Изучением строения клетки занимается цитология (от латинского cytos – клетка и logos – учение).

Клетка – это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих цитоплазму и ядро, участвующих в единой совокупности метаболических, энергетических и информационных процессов и осуществляющих поддержание и воспроизведение всей системы в целом (строение клетки изображено на рисунке 1.3.5). Это длинное и емкое определение требует дальнейших разъяснений.

Размер клеток может быть различным. Некоторые шаровидные бактерии имеют ничтожные размеры: от 0,2 до 0,5 мкм в диаметре (напомним, что 1 мкм в тысячу раз меньше 1 мм). В то же время существуют клетки, которые видны невооруженным глазом. Например, яйцо птицы – это, в сущности, одна клетка. Яйцо страуса достигает в длину 17,5 см, и это самая крупная клетка. Однако, как правило, размеры клеток колеблются в значительно более узких пределах – от 3 до 30 мкм.

Формы клеток также очень разнообразны. Некоторые из них приведены на рисунке 1.3.4. Клетки живых организмов могут иметь вид шара, многогранника, звезды, цилиндра и других фигур.

Рисунок 1.3.4. Формы клеток:

1 - клетка крови - лимфоцит; 2 - клетка печени - гепатоцит; 3 - клетка костной ткани - остеобласт; 4 - клетка мерцательного эпителия; 5 - бокаловидная клетка слизистой оболочки толстой кишки; 6 - мужская половая клетка (сперматозоид); 7 - клетка нервной ткани - нейрон

Несмотря на то, что клетки имеют разные формы и размеры, выполняют различные и часто весьма специфические функции, они, в принципе, имеют одинаковое строение, то есть у них можно выделить общие структурные единицы. Клетки животных и растений состоят из трех основных компонентов – клеточной мембраны, отделяющей содержимое клетки от внешней среды или от соседних клеток, цитоплазмы и ядра.

 

 

Основные компоненты клетки = клеточная мембрана + цитоплазма + ядро  
 

 

 
   

Возможны, тем не менее, и исключения. Например, мышечные волокна ограничены мембраной и состоят из цитоплазмы с множеством ядер. Иногда после деления дочерние клетки остаются связанными друг с другом с помощью тонких цитоплазматических перемычек. Есть примеры безъядерных клеток (эритроциты), имеющих в своем составе только клеточную мембрану и цитоплазму, они обладают ограниченными функциональными возможностями, так как лишены способности к самообновлению и воспроизводству, в связи с отсутствием ядра.

Ядро и цитоплазма составляют протоплазму.

Протоплазма = Ядро + Цитоплазма  
 

 

 

Клеточная мембрана представляет собой оболочку, отделяющую содержимое клетки от внешней среды или соседних клеток. Основу клеточной мембраны составляет двойной слой липидов, в который погружены белковые молекулы, некоторые из них выполняют функцию рецепторов. Снаружи мембрана покрыта слоем гликопротеиновгликокаликсом . Одна из основных функций клеточной мембраны – барьерная, поскольку она ограничивает свободное перемещение веществ между цитоплазмой и внешней средой. Выросты (реснички мерцательного эпителия дыхательных путей, микроворсинки клеток кишечного эпителия) на клеточной мембране могут участвовать в процессах всасывания веществ внутрь клетки. Они значительно увеличивают площадь клеточной мембраны и наиболее характерны для эпителиальных клеток. Например, клетка кишечного эпителия имеет до 3000 микроворсинок, что увеличивает общую поверхность тонкой кишки до 200-300 м2 и способствует интенсивному всасыванию питательных веществ.

Клеточная мембрана также осуществляет связь с внеклеточной средой и распознает вещества и стимулы, воздействующие на клетку. Эта способность обеспечивается специальными структурами клеточной мембраны, названными рецепторами.

Клеточные рецепторы – это белковые макромолекулы, расположенные внутри клеточной мембраны (трансмембранно) или в самой клетке, специфически (избирательно) реагирующие на определенные химические вещества. Особую роль играют рецепторы, распознающие биологически активные веществагормоны, медиаторы, специфические антигены других клеток или определенные белки. Различают рецепторы разных видов. Любой вид рецепторов способен связываться с ограниченным числом медиаторов или гормонов. Чем с меньшим числом медиаторов или гормонов может взаимодействовать данный рецептор, тем выше его специфичность. Это явление получило название принципа структурной комплементарности (соответствия). Этот принцип можно сравнить с правилом “ключ-замок”.

К выпускаемому замку (рецептору) прилагается ограниченный набор ключей (медиаторов или гормонов). Замок тем лучше, чем меньшее число “посторонних” ключей к нему подходит.

Клеточные рецепторы обеспечивают такие важные процессы, как взаимное распознавание клеток и регуляцию их функций. Эффекты лекарств также в большинстве случаев являются результатом взаимодействия молекул лекарственных веществ с рецепторами определенного вида.

На изменение физических факторов (температуру, давление, болевое раздражение и другие) реагируют рецепторы другого вида, представляющие собой окончания чувствительных нервных волокон.

Важной функцией клеточной мембраны является обеспечение взаимодействия между соседними клетками. При этом образуются особые объединяющие структуры – межклеточные соединения, различные по своей структуре. Это могут быть выросты мембран соприкасающихся клеток, сцепленные между собой по правилу “ключ – замок” или переплетенные наподобие скрещенных пальцев рук (этот тип так и называется – пальцевидное соединение). Более сложные соединения – десмосомы - два участка мембран соседних клеток “прошиваются” насквозь особыми биологическими нитями – микрофиламентами и микротрубочками , участвующими в образовании каркаса клетки (цитоскелет). Примером межклеточного контакта также являются синапсы, которые встречаются в местах соединения нервных клеток (нейронов) между собой или с клеткой какой-либо ткани (мышечной, эпителиальной). В них осуществляется односторонняя передача сигналов возбуждения или торможения. Более подробно о строении и работе синапсов вы также сможете узнать из последующих глав.

Цитоплазма заполняет внутриклеточное пространство между ядром и клеточной мембраной и под микроскопом напоминает желеобразную массу. Она состоит из гиалоплазмы (матрикса), в которую погружены обязательные клеточные компоненты – органеллы и различные непостоянные структуры (включения).

Цитоплазма = гиалоплазма + органеллы + включения  
 

 

 

Гиалоплазма (матрикс цитоплазмы) является коллоидным раствором главным образом белка, в ней находится 20-25% общего количества белков клетки.

Органеллы – специализированные микроструктуры, которые постоянно присутствуют в клетке и выполняют ряд жизненно важных функций, обеспечивая внутриклеточный обмен веществ (метаболизм), а также энергетический и информационный обмен. Основными органеллами клетки являются эндоплазматическая сеть, митохондрии, аппарат Гольджи и лизосомы.

Эндоплазматическая сеть состоит из множества замкнутых зон в виде пузырьков (вакуолей), плоских мешков или трубчатых образований, отделенных от гиалоплазмы мембраной и имеющих внутренние полости с собственным содержимым.

Со стороны гиалоплазмы она покрыта мелкими округлыми тельцами, названными рибосомами (содержат большое количество РНК) и придающими ей под микроскопом “шероховатый” или гранулярный вид. Рибосома состоит из большой и малой субъединиц, в которых имеется желобок. Он образует канал при сборке рибосомы, по которому проходит матричная (информационная) РНК. На рибосомах синтезируются белки, например, служащие строительным материалом для клеточных органелл. Такие белки в дальнейшем расходуются на нужды самой клетки, а другие – синтезированные “на экспорт” – покидают клетку, участвуя в межклеточном обмене информацией или выполнении клеткой специфических функций.

Накапливающиеся в полостях эндоплазматической сети белки, в том числе ферментные, необходимы для внутриклеточного обмена веществ и пищеварения. Они транспортируются в аппарат Гольджи, после чего входят в состав лизосом или секреторных гранул, отделенных от гиалоплазмы мембраной.

Часть эндоплазматической сети не содержит рибосом, ее называют гладкой эндоплазматической сетью. Эта сеть участвует в метаболизме липидов и некоторых внутриклеточных полисахаридов. Она играет важную роль в разрушении вредных для организма веществ (особенно в клетках печени).

Митохондрии являются также очень важными компонентами клетки. В них происходит превращение веществ, поступающих с пищей, в богатые энергией соединения. Эти соединения впоследствии расходуются во всех процессах, требующих затраты энергии. Они имеют гладкую наружную мембрану, а внутренняя мембрана образует множество выростов, перегородок. Митохондрии называют еще органеллами клеточного дыхания или силовыми станциями клетки, так как основной источник энергии в живых организмах – аденозинтрифосфат (АТФ) – синтезируется именно в них.

Аппарат Гольджи назван по имени итальянского гистолога К. Гольджи. Он представляет собой комплекс уплощенных мешков (цистерн), сложенных наподобие стопки блинов, и трубочек (3), от которых отщепляются пузырьки (1) с собственным содержимым – так образуются, в частности, первичные лизосомы (4). В аппарате Гольджи происходит накопление продуктов, синтезированных в эндоплазматической сети, их химическая модификация, синтез полисахаридов и образование их комплексов с белками (мукопротеидов), а также “упаковка” и выведение вырабатываемых продуктов (секрета) за пределы клетки.

Лизосомы – сферические тельца, размером 0,2-0,4 мкм, ограниченные одиночной мембраной. В клетке можно обнаружить различные виды лизосом, но все они объединены общим признаком – наличием в них ферментов, расщепляющих биополимеры. Ферменты лизосом синтезируются в эндоплазматической сети, а затем “упаковываются” в мембранную оболочку в аппарате Гольджи (первичные лизосомы). При слиянии первичных лизосом с вакуолями, содержащими поглощенные клеткой питательные вещества, или с измененными органеллами самой клетки образуются вторичные лизосомы. В них, под действием ферментов, происходит расщепление сложных веществ. Продукты расщепления проходят через мембрану лизосомы в гиалоплазму и включаются в различные процессы внутриклеточного обмена. Однако переваривание сложных веществ в лизосоме не всегда идет до конца. В этом случае внутри нее накапливаются непереваренные продукты. Такие лизосомы называют остаточными тельцами. В этих тельцах происходит уплотнение содержимого, его вторичная структуризация и отложение пигментных веществ. Так, у человека при старении организма в остаточных тельцах клеток мозга, печени и мышечных волокон происходит накопление “пигмента старения”липофусцина.

Лизосомы, соединившиеся с измененными органеллами самой клетки, играют роль внутриклеточных “чистильщиков”, убирающих дефектные структуры. Увеличение числа таких лизосом является обычным явлением при процессах, обусловленных болезнью. В нормальных условиях число лизосом-"чистильщиков" увеличивается при так называемых метаболических стрессах, когда повышается активность клеток в органах, участвующих в обмене веществ, например клеток печени.

Особой разновидностью лизосом являются пероксисомы . В своем составе они имеют пероксидазу – фермент, нейтрализующий многие токсические вещества, в том числе этиловый спирт.

Помимо вышеописанных (эндоплазматическая сеть, митохондрии, аппарат Гольджи, лизосомы), в клетке встречается большое число самостоятельных образований в форме нитей, трубочек или даже мелких плотных телец (включений). Они выполняют разнообразные функции: образуют каркас (цитоскелет), необходимый для сохранения формы клетки, участвуют в транспорте веществ внутри клетки и в процессах деления.

В некоторых клетках встречаются специальные органеллы движения – реснички и жгутики, которые выглядят как выросты клетки, ограниченные внешней клеточной мембраной. Свободные клетки, имеющие реснички или жгутики, обладают способностью передвигаться (сперматозоиды) или перемещать жидкость и различные частицы. Например, внутренняя поверхность бронхов выстлана так называемыми реснитчатыми клетками, которые постоянным колебанием (мерцанием) ресничек продвигают бронхиальный секрет (мокроту) в сторону гортани, удаляя микроорганизмы и мельчайшие частицы пыли, попавшие в дыхательные пути.

Ядро клетки имеет округлую форму и окружено ядерной оболочкой , которая отличается большей пористостью, чем наружная клеточная мембрана. Через нее могут проходить целые молекулы белка. Ядро заполнено прозрачной нуклеоплазмой, в которую погружены тонкие длинные нити хроматина . В период деления клетки хроматин уплотняется, образуя хромосомы, хорошо различимые даже в световом микроскопе. Хроматин и хромосомы – это уровни упаковки генетического материала и дезоксирибонуклеиновой кислоты (ДНК) накручиваются на особые белки – гистоны .

Хромосома = ДНК + гистоны + белки  
 

 

 

ДНК – основной носитель генетической информации. Нити ДНК образуют двойную спираль, закрученную вокруг общей оси.

ДНК – две полинуклеотидные цепи, закрученные в спираль одна вокруг другой.  
 

 

 

Ген – это участок ДНК, содержащий программу построения только одного определенного белка, например, хорошо всем известного гормона – инсулина. Афористическая формула “Один ген – один белок” была открыта еще полвека назад.

ДНК = ген + ген + ген + ... + ген  
 

 

 

Информация, содержащаяся в гене, передается в цитоплазму посредством матричной, или информационной РНК (мРНК), подробнее о которой мы расскажем, разбирая биосинтез белка. Если контакт ядра с цитоплазмой прекращается, то скорость всех реакций в клетке постепенно замедляется, и она в результате погибает.

Помните правило “ключ – замок”? Как раз на основе этого механизма (принципа структурной комплементарности) расположенные напротив азотистые основания (в составе нуклеотидов) нитей ДНК соединяются в пары путем образования водородных связей: аденин (А) только с тимином (Т), а гуанин (G) только с цитозином (С). Таким же образом к одной из цепей ДНК достраивается мРНК.

В период деления происходит “ремонт”, воспроизведение и удвоение (редупликация) молекул ДНК, что позволяет передать дочерним клеткам одинаковый в количественном и качественном отношении объем генетической информации.

Самая большая из хромосом человека содержит ДНК длиной около 7 см. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет приблизительно 170 см.

Помимо хромосом, в ядре находится также одно или несколько относительно больших круглых ядрышек, размером 1-5 мкм, которые богаты рибонуклеиновой кислотой (РНК). Она активно расходуется при делении клеток, а также на образование рибосом. Эти ядрышки представляют собой петли из нитей хроматина, которые участвуют в синтезе белка.


Дата добавления: 2020-12-12; просмотров: 459; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!