Биотехнологии и будущее человечества.



Материалы к теме «Постнекласичесая наука».

 

Постнеклассическая наука формируется в 70-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин. Для постнеклассической науки характерно выдвижение на первый план междисциплинарных, комплексных и проблемно ориентированных форм исследований. В определении познавательных целей науки все чаще начинают играть решающую роль не внутринаучные цели, а внешние для науки цели — цели экономического, социального, политического, культурного характера. Объектами современных междисциплинарных исследований становятся уникальные системы, характеризующиеся открытостью и саморазвитием. Невозможным стало не учитывать роль человека в исследуемых системах.

 

 В данное время развиваются генные технологии, основанные на методах молекулярной биологии и генетики, которые направлены на конструирование новых, ранее в природе не существовавших генов. Основная цель генных технологий - видоизменение ДНК. Работа в этом направлении привела к разработке методов анализа генов и геномов, а также их синтеза, т.е. конструирование новых генетически модифицированных организмов. Разработан принципиально новый метод, приведший к бурному развитию микробиологии - клонирование.

 

Внесение эволюционных идей в область химических исследований привело к формированию нового научного направления - эволюционной химии. Так, на основе ее открытий, в частности разработки концепции саморазвития открытых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхождения от низших химических систем к высшим.

 

Наметилось еще большее усиление математизации естествознания, что повлекло увеличение уровня его абстрактности и сложности. Так, например, развитие абстрактных методов в исследованиях физической реальности приводит к созданию, с одной стороны, высокоэффективных теорий, таких как квантовая хромодинамика, "теория Великого Объединения", электрослабая теория Салама-Вайнберга  (она даёт объединённое описание электромагного и слабого взаимодействий. Несмотря на разнообразие воздействий тел друг на друга (зависящих от взаимодействий слагающих их элементарных частиц), в природе, по современным данным, имеется лишь 4 типа фундаментальных взаимодействий. Это (в порядке возрастания интенсивности В.): гравитационное взаимодействие, слабое взаимодействие (отвечающее за большинство распадов и многие превращения элементарных частиц), электромагнитное взаимодействие (Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля)., сильное взаимодействие (обеспечивающее, в частности, связь частиц в атомных ядрах и поэтому часто называемое ядерным). В 80-х гг. установлено, что слабое и электромагнитное взаимодействия - различные проявления единого электрослабого взаимодействия.

Об интенсивности взаимодействий можно судить по скорости процессов, к-рые оно вызывает. Обычно сравнивают между собой скорости процессов при энергиях ГэВ (гигаэлектронвольт – единица измерения энергии), характерных для физики элементарных частиц. При таких энергиях процесс, обусловленный сильным взаимодействием, происходит за время с, эл--магн. процесс за время с, характерное же время процессов, происходящих за счёт С. в. (слабых процессов), гораздо больше: с.

Другая характеристика взаимодействия - длина свободного пробега частицы в веществе. Сильно взаимодействующие частицы (адроны) можно задержать железной плитой толщиной в неск. десятков см, тогда как нейтрино, обладающее лишь Слабыми взаимодействиями., проходило бы, не испытав ни одного столкновения, через железную плиту толщиной порядка миллиарда км. Ещё более слабым является гравитац. взаимодействие, сила к-рого при энергии ~1 ГэВ в 1033 раз меньше, чем у Слабого взаимодействия Однако обычно роль гравитац. взаимодействия гораздо заметнее роли С. в. Это связано с тем, что гравитац. взаимодействие, как и электромагнитное, имеет бесконечно большой радиус действия; поэтому, напр., на тела, находящиеся на поверхности Земли, действует гравитац. притяжение всех атомов, из к-рых состоит Земля. Слабое же взаимодействие обладает очень малым радиусом действия: ок. 2*10-16 см (что на три порядка меньше радиуса сильного взаимодействия). Вследствие этого, напр., С. в. между ядрами двух соседних атомов, находящихся на расстоянии 10-8 см, ничтожно мало, несравненно слабее не только электромагнитного, но и гравитац. взаимодействий между ними.

, квантовая хромодинамика ((КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц)., "теория Великого Объединения" — в физике элементарных частиц группа теоретических моделей, описывающих единым образом сильное, слабое и электромагнитное взаимодействия. Предполагается, что при чрезвычайно высоких энергиях (выше 1014 ГэВ) эти взаимодействия объединяются. Впрочем, многие физики-теоретики считают, что объединять эти взаимодействия без гравитации не имеет смысла, и путь к «Великому объединению» лежит через создание «теории всего».( Бозон Хиггса первоначально был предсказан в теории, и после нескольких десятков лет поиска 4 июля 2012 года представители ЦЕРНа сообщили, что на обоих основных детекторах БАК наблюдалась новая частица с массой около 125—126 ГэВ. Есть веские основания считать, что эта частица является бозоном Хиггса .

Основные направления развития современной фундаментальной физики — это физика элементарных частиц и космология — наука об эволюции Вселенной. В последние 10–15 лет стало понятно, что устройства микро- и макромира теснейшим образом связаны друг с другом. Открытие в одной области дает сильный импульс развития другой.

Открытие бозона Хиггса позволит ученым подтвердить, что основа современной физики — Стандартная модель — является надежным базисом для дальнейшего развития представлении о Природе. В рамках Стандартной модели бозон Хиггса (элементарная частица) отвечает за массу элементарных частиц. Предсказание существования частицы Хиггса не было подтверждено экспериментально десятки лет, что являлось темным пятном всей физики элементарных частиц. Открытие бозона Хиггса подтверждает верность основного направления развития и сильно сужает возможности альтернативных теорий как в микро-, так и в макромире. Это позволит более эффективно использовать бюджетные средства.) (Бозо́н (от фамилии физика Бозе) — частица с целым значением спина. Термин был предложен физиком Полем Дираком. Бозоны, в отличие от фермионов, подчиняются статистике Бозе — Эйнштейна, которая допускает, чтобы в одном квантовом состоянии могло находиться неограниченное количество одинаковых частиц. Системы из многих бозонов описываются симметричными относительно перестановок частиц волновыми функциями. Различают элементарные бозоны и составные.

Элементарные бозоны являются квантами калибровочных полей, при помощи которых осуществляется взаимодействие элементарных фермионов (лептонов и кварков) в Стандартной модели. К таким калибровочным бозонам (В физике элементарных частиц калибровочные бозоны — это бозоны, которые действуют как переносчики фундаментальных взаимодействий природы) относят:

· фотон (электромагнитное взаимодействие),

· глюон (сильное взаимодействие)

· W± и Z-бозоны (слабое взаимодействие).

Кроме этого, к элементарным бозонам относят бозон Хиггса, ответственный за механизм появления масс в электрослабой теории, и не обнаруженный до настоящего времени гравитон (гравитационное взаимодействие).

Все элементарные бозоны, за исключением W±-бозонов, являются незаряженными. W+ и W бозоны по отношению друг к другу выступают как античастицы. Калибровочные бозоны (фотон, глюон, W± и Z-бозоны) имеют единичный спин. Гипотетический гравитон — спин 2, и бозон Хиггса — спин 0)

 

 Большой адро́нный колла́йдер (БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (ЦЕРН), на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более чем 100 стран.

Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным — из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; коллайдером (англ. colliderсталкиватель) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.)

(функция – выражает зависимость. Например, Y = X^2, X=0 то Y=0; X=2 то Y=4)

 

 и т.д. а с другой - к так называемому "кризису" физики элементарных частиц. Так, американский физик М. Гутцвиллер в 1994 г. писал: "Несмотря на все обещания, физика элементарных частиц превратилась в кошмар, несмотря на ряд глубоких интуитивных прозрений, которые мы эксплуатировали некоторое время. Неабелевы поля известны 40 лет, кварки наблюдались 25 лет назад, а гармоний открыт 20 лет назад. Но все чудесные идеи привели к моделям, которые зависят от 16 открытых параметров (нельзя принять как константу – серьёзно меняющиеся величины; в видеозаписи об экономике говорилось, что если есть 5 открытых параметров, то у современных компьютеров не хватит мощности просчитать их) Мы даже не можем установить прямые соответствия с массами элементарных частиц, поскольку необходимая для этого математика слишком сложна даже для современных компьютеров...» Однако имеющиеся проблемы ни в коем случае не отрицают, не умаляют значимости научных достижений и всё возрастающей мощи науки. Горизонт научного познания расширился поистине до фантастических размеров. На микроскопическом конце шкалы масштабов физика элементарных частиц вышла на уровень изучения процессов, которые происходят за время около 10-23 с и на расстояниях 10-15 см. На другом конце шкалы космология и астрофизика изучают процессы, происходящие за время порядка возраста Вселенной 1018 с и радиуса Вселенной 1028 см. Недавно обнаружены астрономические объекты, свет от которых идет к нам 12 млрд лет. Свет от этих объектов «вышел» тогда, когда до возникновения Земли оставалось еще 7 млрд лет. Человек получает возможность заглянуть в самое начало «творения» Вселенной. Всё ускоряющимися темпами идет развитие микроэлектроники, вычислительной техники.

 

Развитие вычислительной техники связано с созданием микропроцессоров, которые были положены также в основание создания станков с программным управлением, промышленных роботов, для создания автоматизированных рабочих мест, автоматических систем управления. Прогресс в 80 - 90-х гг. XX в. развития вычислительной техники вызван созданием искусственных нейронных сетей (Иску́сственные нейро́нные се́ти — математические модели, а также их программные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. После разработки алгоритмов (последовательности действий) обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления.

Искусственные Нейронные Сети представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные творческие задачи (не обязательно простое обобщение) Мат.модель – это любая схематизация, формализация реальности. Например, бросаем мяч под углом к горизонту – хотим выяснить дальность полёта. Для этого рисуем схему, на которой мяч – точка, горизонт – линия и траектория полёта – парабола (дуга), дополнительно рисуем векторы силы (например, сила тяжести – вектор из точки вниз; вектор силы трения – противоположный полёту и.т.д). А искусственную нейроную сеть условно, упрощённо можно изобразить как шарики соединенные линиями (вершины и рёбра графа), они взаимодействуют друг с другом по этим линиям.

 на основе которых разрабатываются и создаются нейрокомпьютеры, обладающие возможностью самообучения в ходе решения наиболее сложных задач. Большой шаг вперед сделан в области решения качественных задач. Так, на основе теории нечетких множеств (Нечёткое (или размытое, расплывчатое, туманное, путанное, пушистое) множество — понятие, введённое Лотфи Заде (род в Азербайджане, иранского происхождения) в 1965 г. Лотфи Заде расширил классическое канторовское понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале , а не только значения или . (теория множеств для работы с множествами, например натуральные числа (это целые числа больше нуля) допустим обладают общей характеристикой – нельзя из них вычесть большее натуральное число и получить натуральное число, поэтому к даному множеству такая операция не применима; может применяться в базах даных: например, посмотреть кому выдали зарплату в 2012г – это множество)  создаются нечеткие компьютеры, способные решать подобного рода задачи (стохастические). А внесение человеческого фактора в создание баз данных (набор данных – это какая-то структурированная информация, хранящаяся в памяти компьютера, например содержание интернета – это большая база данных) привело к появлению высокоэффективных экспертных систем (это база данных + правила построения логических выводов на основе этой базы данных. Например, больной приходит к врачу и говорит что и когда у него болит. Врач (оператор ЭВМ) заносит эти данные в компьютер. Компьютер просматривает базу данных по аналогичным случаям, какие были диагнозы и на основе, запрограмированого алгоритма логического вывода ставит диагноз) - , которые составили основу систем искусственного интеллекта. Научное направление, в рамках которого ставятся и решаются задачи аппаратного (железо) (аппаратный – это, например вместо программы нейронной сети сделать реальную, допустим электрическую сеть) или программного моделирования тех видов человеческой деятельности, которые традиционно считаются интеллектуальными.

Структура интеллектуальной системы включает три основных блока — базу знаний, решатель и интеллектуальный интерфейс (система взаимодействия чего-то с чем-то, например компьютер взаимодействует с нами экраном (пользовательский интерфейс). Опыт (практика) показал, что компьютерные мощности удваиваются каждые два года (закон Мура). Из закона Мура (отображаемого графиком экспоненты) следует, что через определеное время будет достигнута точка технологической сингулярности, это означает, что мы не сможем далее контролировать НТП, например система искусственого интеллекта будет создавать сама всё более совершенные и совершенные системы искусственного ителлекта (одно из предположений), другая возможная неконтролируемость связана с трансгуманизмом (соединение человека с встроеными в него технологиями – чипами, модулями памяти, камерами и т.д.) Рэймонд Курцвейл — известный американский изобретатель и футуролог. В качестве изобретателя он создал многочисленные системы для распознавания речи. Как футуролог он известен научными технологическими прогнозами, учитывающими появление искусственного интеллекта и средств радикального продления жизни людей. Согласно Курцвейлу, в будущем человечество достигнет почти неограниченного материального изобилия, а люди могут стать бессмертными. Он также дал обоснование технологической сингулярности — феноменально быстрого научно-технического прогресса, основанного на мощном искусственном интеллекте (превосходящем человеческий) и киборгизации людей.

В 1990 году Курцвейл опубликовал свою первую книгу по футурологии «Эпоха мыслящих машин». В 1998 году за ней последовала книга «Эпоха духовных машин». В 2005 также был выпущен документальный фильм Курцвейла «Сингулярность уже близка: истинная история о будущем», посвящённый неизбежному наступлению технологической сингулярности.

С декабря 2012 года Курцвейл занимает должность технического директора в области машинного обучения и обработки естественного языка в компании Google.

Основные предсказания

· В 2010-е годы специальные устройства будут проецировать изображения прямо в человеческие глаза, создавая эффект виртуальной реальности. Мобильные телефоны, встроенные в одежду, станут посылать звук прямо в ухо . «Виртуальные ассистенты» будут помогать людям во многих повседневных делах. В частности, они смогут производить мгновенный перевод иностранной речи. Маленькие компьютеры, связанные с интернетом, будут всё теснее интегрироваться в повседневную жизнь.

· По мнению Курцвейла, уже в 2014 году мощность суперкомпьютера сравняется с мощностью человеческого мозга. Компьютеры перестанут существовать, как отдельные объекты — они примут нетрадиционную форму и будут встроены в одежду и повседневные предметы. Виртуальная реальность будет вовлекать не только зрение и слух, а все органы чувств.

· К 2020 году персональные компьютеры достигнут вычислительной мощности человеческого мозга. В 2020-х годах в медицинских целях начнут использовать наномашины. В частности, нанороботы смогут доставлять питание к клеткам человека и удалять их отходы. Они также произведут детальное сканирование мозга человека, позволяющее понять детали его работы. К концу десятилетия в промышленности станут широко использоваться нанотехнологии, что приведёт к значительному удешевлению производства всех продуктов. К 2029 году компьютер сможет пройти Тест Тьюринга, доказывая наличие у него разума в человеческом понимании слова. Это будет достигнуто путём компьютерной симуляции мозга человека.

· В 2030-е годы наномашины будут вставляться прямо в мозг и осуществлять произвольный ввод и вывод сигналов из клеток мозга. Это приведёт к виртуальной реальности «полного погружения», которая не потребует какого-либо дополнительного оборудования.

· В 2040-е годы человеческое тело сможет принимать любую форму, образуемую большим числом нанороботов. Внутренние органы будут заменены кибернетическими устройствами гораздо лучшего качества.

· Курцвейл предсказывает наступление технологической сингулярности в 2045 году. В это время вся Земля начнёт превращаться в один гигантский компьютер, и постепенно этот процесс может распространиться на всю Вселенную. Природа сингулярности такова, что более конкретные прогнозы на период после 2045 года сделать затруднительно.

В завершение таких предсказаний надо всё же отметить, что далеко не все учёные согласны с ними. Всё это следует рассматривать в качестве футурологического прогноза.

Возвращаясь же к реальности сегодняшнего дня отметим, что сближение, интеграция науки и техники вышли на новый качественный уровень. Наука стала непосредственной производительной силой общества. По отношению к практике она выполняет программирующую роль. Под влиянием науки (в том числе) возрастает личностное начало, роль человеческого фактора во всех формах деятельности. Новые информационные технологии и средства вычислительной техники, достижения генной инженерии и биотехнологии изменяют материальную цивилизацию, уклад нашей жизни.

Имет смысл внимательнее посмотреть на феномен биотехнологии.

Биотехнологии и будущее человечества.

 Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

 

В XXI в. биология выступает лидером естествознания. Это обусловлено прежде всего возрастанием ее практических возможностей, ее программирующей ролью в аграрной, медицинской, экологической и других сферах деятельности, способностью решать важнейшие проблемы жизнедеятельности человека, в конечном счете даже определять судьбы человечества. Одной из важнейших форм связи современной биологии с практикой являются биотехнологии.

Биотехнологии связаны с тем, что возникло биогенным путем. Они основаны на последних достижениях многих отраслей современной науки: биохимии и биофизики, вирусологии, физико-химии ферментов (Ферме́нты, или энзи́мы (от лат. fermentum - закваска) — обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие химические реакции в живых системах), микробиологии, молекулярной биологии, генетической инженерии.

Термин «биотехнология» получил распространение в 1970-е гг., но человек имел дело с биотехнологиями и в далеком прошлом. Некоторые биотехнологические процессы, основанные на применении микроорганизмов, человек использует еще с древнейших времен: в хлебопечении, в приготовлении вина и пива, уксуса, сыра, различных способах переработки кож, растительных волокон и т.д. Современные биотехнологии основаны главным образом на культивировании микроорганизмов (бактерий и микроскопических грибов), животных и растительных клеток, методах генной инженерии.

Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, агробиотехнологии и экологические биотехнологии. Новейшим и важнейшим ответвлением биотехнологии является генная инженерия.

 Медицинские биотехнологии подразделяются на диагностические и лечебные. Диагностические медицинские биотехнологии в свою очередь разделяют на химические (определение диагностических веществ и параметров их обмена) и физические (определение особенностей физических процессов организма).

Химические диагностические биотехнологии используются в медицине давно. Но если раньше они сводились к определению в тканях и органах веществ, имеющих диагностическое значение (статический подход), то сейчас развивается и динамический подход, позволяющий определять скорости образования и распада представляющих интерес веществ, активность ферментов, осуществляющих синтез или деградацию этих веществ, и др.

В будущем возрастет роль физической диагностики, которая дешевле и быстрее, чем химическая, и состоит в определении физико-химических (Физи́ческая хи́мия — раздел химии, наука об общих законах строения, структуры и превращения химических веществ, происходящих в результате химических реакций при различных внешних условиях. Исследует химические явления с помощью теоретических и экспериментальных методов физики. Различие между физической химией и химической физикой

Обе эти науки находятся на стыке между химией и физикой, иногда химическую физику включают в состав физической химии. Провести чёткую границу между этими науками не всегда возможно. Однако с достаточной степенью точности это отличие можно определить следующим образом:

· физическая химия рассматривает суммарно процессы, протекающие с одновременным участием множества частиц;

· химическая физика рассматривает отдельные частицы и взаимодействие между ними, то есть конкретные атомы и молекулы (таким образом, в ней нет места понятию «идеальный газ», которое широко используется в физхимии).

· Разделы физической химии

· Учение о строении вещества, свойствах молекул, ионов, радикалов, природе химической связи — В этот раздел входит учение о строении атомов и молекул и учение об агрегатных состояниях вещества. Учение о строении атома, относящееся в большей степени к физике, в курсах физической химии необходимо для выяснения вопросов образования молекул из атомов, природы химической связи.

· Химическая термодинамика — В этом разделе физической химии рассматриваются основные соотношения, вытекающие из первого закона термодинамики, которые позволяют рассчитать количество выделяемой или поглощаемой теплоты и определить, как будет влиять на него изменение внешних условий. На основе второго закона термодинамики определяется возможность самопроизвольного течения процесса, а также условия положения равновесия и его смещения под влиянием изменения внешних условий. Внутри данного раздела можно выделить несколько подразделов:

· Термодинамика газов

· Термодинамика растворов рассматривает природу растворов, их внутреннюю структуру и важнейшие свойства, зависимость свойств от концентрации и химической природы компонентов и вопросы растворимости.

· Термодинамика адсорбции

· Статистическая термодинамика позволяет получать термодинамические параметры системы исходя из строения компонентов системы и внешних условий.

· Химическая кинетика — изучает скорость химических реакций, её зависимость от внешних условий (температура, концентрации). Является одним из важнейших разделов химии, показывает какой именно продукт образуется в сложной системе

· Электрохимия изучает некоторые особенности свойств растворов электролитов, электропроводность растворов, процессы электролиза)

· Звукохимия (акустохимия) изучает химические процессы, протекающие при действии звуковых волн).

        процессов, лежащих в основе жизнедеятельности клетки, а также физических процессов (тепловых, акустических, электромагнитных и др.) на тканевом уровне, уровне органов и организма в целом. На базе такого рода анализа в рамках биофизики сложных биологических систем будут развиваться новые методы физиотерапии (Физиотерапия — специализированная область клинической медицины, изучающая физиологическое и лечебное действие природных и искусственно создаваемых физических факторов на организм человека), выяснится смысл многих так называемых нетрадиционных методов лечения, приемов народной медицины и т.д.

 

Биотехнологии широко используются в фармакологии. В древности для лечения больных применяли животные, растительные и минеральные вещества. Начиная с XIX в. в фармакологии получают распространение синтетические химические препараты, а с середины XX в. и антибиотики — особые химические вещества, которые образуются микроорганизмами и способны оказывать избирательно токсическое воздействие на другие микроорганизмы. В конце XX в. фармакологи обратились к индивидуальным биологически активным соединениям и стали составлять их оптимальные композиции, а также использовать специфические активаторы и ингибиторы (замедляет) определенных ферментов, суть действия которых — в вытеснении патогенной микрофлоры невредной для здоровья людей микрофлорой.

Биотехнологии помогают в борьбе современной медицины с сердечно-сосудистыми заболеваниями (прежде всего с атеросклерозом), с онкологическими заболеваниями, с аллергиями как патологическим нарушением иммунитета (способность организма защищать свою целостность и биологическую индивидуальность), старением и вирусными инфекциями (в том числе со СПИДом).

 

 Биотехнологии широко применяются в сельском хозяйстве и в области экологии.

 В XX в. произошла «зеленая революция» — за счет использования минеральных удобрений, пестицидов (Пестици́ды (лат. зараза + убиваю) (сельскохозяйственные ядохимикаты) — химические средства, используемые для борьбы с вредителями и болезнями растений, сорняками, вредителями зерна и зернопродуктов, древесины, изделий из хлопка, шерсти, кожи, с эктопаразитами домашних животных, а также с переносчиками опасных заболеваний человека и животных. Пестициды объединяют следующие группы таких веществ: гербициды, уничтожающие сорняки,инсектициды, уничтожающие насекомых-вредителей, фунгициды, уничтожающие патогенные грибы, зооциды, уничтожающие вредных теплокровных животных и т. д. Большая часть пестицидов — это яды, отравляющие организмы-мишени, но к ним относят также стерилизаторы (вещества, вызывающие бесплодие) и ингибиторы роста.

Пестициды относятся к ингибиторам (отравителям) ферментов (биологических катализаторов). Под действием пестицидов часть биологических реакций перестаёт протекать, и это позволяет: бороться с болезнями (антибиотики), дольше хранить пищу (консерванты), уничтожать насекомых (инсектициды), уничтожать сорняки (гербициды).

Пестициды проникающие во все ткани живого организма или растения называются системными пестицидами.

Пестициды применяются главным образом в сельском хозяйстве, хотя их используют также для защиты запасов продовольствия, древесины и других природных продуктов. Во многих странах с помощью пестицидов ведётся химическая борьба с вредителями лесов, а также переносчиками заболеваний человека и домашних животных (например с малярийными комарами).

 удалось добиться резкого повышения продуктивности растениеводства. Но сейчас понятны и ее отрицательные последствия, например насыщение продуктов питания нитратами и ядохимикатами. Основная задача современных агробиотехнологий — преодоление отрицательных последствий «зеленой революции», микробиологический синтез средств защиты растений, производства кормов и ферментов для кормопроизводства и др. При этом упор делается на биологические методы восстановления плодородия почвы, биологические методы борьбы с вредителями сельскохозяйственных культур, на выведение новых высокопродуктивных и обладающих другими полезными свойствами (например, засухоустойчивостью или устойчивостью к засолению) сортов культурных растений.

Продовольственные сельскохозяйственные культуры служат сырьем для пищевой промышленности. Биотехнологии используются при изготовлении пищевых продуктов из растительного и животного сырья, их хранении и кулинарной обработке, при производстве искусственной пищи (искусственной икры, искусственного мяса из сои, бобы которой богаты полноценным белком), при производстве корма для скота из продуктов, полученных из водорослей и микробной биомассы (например, получение кормовой биомассы из микробов, растущих на нефти).

Биотехнологии выступают одним из важнейших способов решения экологических проблем. Они применяются для уничтожения загрязнений окружающей среды (например, очистка воды или очистка от нефтяных загрязнений), для восстановления разрушенных биоценозов (тропических лесов, северной тундры), восстановления популяций исчезающих видов или акклиматизации растений и животных в новых местах обитания.

Так, с помощью биотехнологий решается проблема освоения загрязненных территорий устойчивыми к этим загрязнениям видами растений. Например, зимой в городах для борьбы со снежными заносами используются минеральные соли, от которых гибнут многие виды растений. Однако некоторые растения устойчивы к засолению, способны поглощать цинк, кобальт, кадмий, никель и другие металлы из загрязненных почв; конечно, они предпочтительнее в условиях больших городов. Выведение сортов растений с новыми свойствами — одно из направлений экологической биотехнологии.

 Биотехнологии успешно применяются в некоторых «экзотических» отраслях. Так, во многих странах микробная биотехнология используется для повышения нефтеотдачи. Микробиологические технологии исключительно эффективны и при получении цветных и благородных металлов. Если традиционная технология включает в себя обжиг, при котором в атмосферу выбрасывается большое количество вредных серосодержащих газов, то при микробной технологии руда переводится в раствор (микробное окисление), а затем путем электролиза из него получают ценные металлы.

Использование метанотрофных бактерий позволяет снизить концентрацию метана в шахтах. А для отечественной угледобычи проблема шахтного метана всегда была одной из самых острых: по статистике, из-за взрывов метана в шахтах каждый добытый 1 млн т угля уносит жизнь одного шахтера.

Созданные биотехнологическими методами ферментные препараты находят широкое применение в производстве стиральных порошков, в текстильной и кожевенной промышленности.

Космическая биология и медицина изучают закономерности функционирования живых организмов, прежде всего человеческого, в условиях космоса, космического полета, пребывания на других планетах и телах Солнечной системы. Одним из важных направлений в этой области является разработка космических биотехнологий — замкнутых биосистем, предназначенных для функционирования в условиях длительного космического полета. Созданная отечественной наукой система такого рода способна обеспечить жизнедеятельность космонавтов в течение 14 лет. Этого вполне достаточно для реализации космической мечты человечества — полета к ближайшим планетам Солнечной системы, прежде всего к Марсу.

 

Таким образом, современные биотехнологии исключительно разнообразны. Не случайно XXI в. нередко называют веком биотехнологии. Важнейшим ответвлением биотехнологии, открывающим самые ошеломляющие перспективы перед человечеством, является генная инженерия.

Генная инженерия возникла в 1970-е гг. как раздел молекулярной биологии, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты. Решающую роль в создании новых комбинаций генетического материала играют особые ферменты (рестриктазы, ДНК-лигазы), позволяющие рассекать молекулу ДНК на фрагменты в строго определенных местах, а затем «сшивать» фрагменты ДНК в единое целое. Только после выделения таких ферментов стало практически возможным создание искусственных гибридных генетических структур.

Методами генной инженерии сначала были получены трансгенные микроорганизмы, несущие гены бактерии и гены онкогенного вируса обезьяны. Впоследствии удалось осуществить микробный (и недорогой) синтез многих биологически активных веществ, присутствующих в тканях животных и растений в весьма низких концентрациях: инсулина (Инсулин – гормон (Гормо́ны — биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах) белковой природы, вырабатываемый поджелудочной железой. Оказывает многогранное влияние на обмен практически во всех тканях. Интерфероны — общее название, под которым в настоящее время объединяют ряд белков со сходными свойствами, выделяемых клетками организма в ответ на вторжение вируса.), интерферона человека, гормона роста человека и т.д. (вакцины против гепатита, а также ферментов, гормональных препаратов).

 

Генная инженерия открыла перспективы конструирования новых биологических организмов — трансгенных растений и животных с заранее запланированными свойствами. По сути, непреодолимых природных ограничений для синтеза генов нет (так, существуют программы по созданию трансгенной овцы, покрытой вместо шерсти шелком; трансгенной козы, молоко которой содержит ценный для человека интерферон; трансгенного шпината, который вырабатывает белок, подавляющий ВИЧ-инфекции, и др.). Возникла новая отрасль промышленности — трансгенная биотехнология, занимающаяся конструированием и применением трансгенных организмов. (Сейчас в США функционирует уже около 2500 генно-инженерных фирм.)

 

В неразрывной связи с разработкой технологий генной инженерии развиваются фундаментальные исследования в молекулярной биологии. Одним из важнейших направлений молекулярной биологии и генной инженерии является изучение геномов растительных и животных видов и разработка способов их реконструкции. Геном — это совокупность генов, характерных для одинарного набора хромосом данного вида организмов. В отличие от генотипа геном представляет собой характеристику вида, а не отдельной особи. Общая логика исследования ведет молекулярную биологию от выяснения способов воссоздания генома вида к разработке способов воссоздания генотипа особи.

Огромное значение имеет изучение генома человека. Геном человека — совокупность наследственного материала, заключенного в клетке человека.  В рамках одного из самых трудоемких и дорогостоящих в истории науки международного проекта «Геном человека» (начат в 1988 г., задействовано несколько тысяч ученых из более чем 20 стран; стоимость) была поставлена задача — выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и локализовать их, т.е. полностью картировать все гены человека. Ожидается, что затем исследователи определят все функции генов и разработают технологические способы использования этих данных.

 

К настоящему времени удалось установить, что геном человека состоит из 3 млрд нуклеотидов, человеческий геном содержит 20 000—25 000 генов, что значительно меньше, чем ожидалось в начале проекта. Только 1,5 % всего генетического материала кодирует белки или функциональную РНК. Остальная часть является некодирующей ДНК, которую часто называют мусорной ДНК. (Функции остальных 90% нуклеотидов ДНК не вполне понятны, и сейчас они выясняются.) Интересно, что различия между двумя людьми на уровне ДНК составляют в среднем один нуклеотид на тысячу, они и обусловливают наследственные индивидуальные особенности каждого человека.

В ходе выполнения проекта «Геном человека» разработано много новых методов исследования, большинство из которых в последнее время автоматизировано. Это значительно ускоряет и удешевляет расшифровку ДНК, что является важнейшим условием для их широкого использования в медицинской практике, фармакологии, криминалистике и т.д. Среди этих методов есть и такие, которые позволяют создавать генные портреты людей. Это дает возможность эффективнее лечить болезни, оценивать способности и возможности каждого человека, оценивать степень приспособленности конкретного человека к той или иной экологической обстановке. По последовательностям ДНК можно устанавливать степень родства людей. Разработан метод «генетической дактилоскопии», который с успехом применяется в криминалистике. Сходные подходы можно использовать в палеонтологии, этнографии, археологии.

К настоящему времени известно около 10 тыс. различных заболеваний человека, из которых более 3 тыс. — наследственные. Выявлены мутации, отвечающие за такие заболевания, как гипертония, диабет, некоторые виды слепоты и глухоты, злокачественные опухоли; обнаружены гены, ответственные за одну из форм эпилепсии, гигантизм и др.

В настоящее время для медицинских целей разрабатываются технологии, позволяющие за одну неделю получить «генетическую карту» человека и записать ее на компакт-диск.

С недавних пор остро обсуждается вопрос о конфиденциальности генетической информации о конкретных людях.

Вместе с тем, как говорят специалисты, изучение генома человека прояснило гораздо меньше загадок, чем ожидалось. Удалось только «поставить указатели» для дальнейших исследований. Прочтение генома — это первый этап в понимании его функционирования. Задача следующего — разобраться в том, каковы функции генов, как и какие белки они синтезируют, как функционируют гены по отдельности и как они взаимодействуют между собой; иначе говоря, как работают вместе 3 млрд нуклеотидов. Это, пожалуй, главная проблема биологии XXI в.

Здесь имет смысл вернуться к первому пункту плана, к развитию вычислительной техники, в которой в данное время ведутся разработки квантового компьютера.Квантовый компьютер — вычислительное устройство, работающее на основе квантовой механики. Квантовый компьютер принципиально отличается от классических компьютеров, работающих на основе классической механики. Полномасштабный  квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на переднем крае современной физики. Ограниченные (до 128  кубитов) квантовые компьютеры уже построены; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Необходимость в квантовом компьютере возникает тогда, когда мы пытаемся исследовать методами физики сложные многочастичные системы, подобные биологическим. Пространство квантовых состояний таких систем растет как экспонента, что делает невозможным моделирование их поведения на классических компьютерах.

Квантовый компьютер использует для вычисления не обычные (классические) алгоритмы, а процессы квантовой природы, так называемые квантовые алгоритмы, использующие квантовомеханические эффекты, такие как квантовый параллелизм и квантовая запутанность.

Если классический процессор в каждый момент может находиться ровно в одном из состояний, то квантовый процессор в каждый момент находится одновременно во всех этих базисных состояниях. Это квантовое состояние называется «квантовой суперпозицией» данных классических состояний.

 

Теперь снова вернёмся в область биотехнологии.

 

Одно из самых перспективных направлений генной инженерии — создание трансгенных растений, животных, микроорганизмов, т.е. таких организмов, в собственный генетический материал которых «встроены» чужеродные гены.

 

На этом пути получены замечательные результаты. Прошли полевые испытания различные трансгенные растительные культуры, одни из которых устойчивы к вирусам, другие — к гербицидам, третьи — к инсектицидам. (соя, хлопок, кукуруза) Развивается и индустрия трансгенных животных. Они широко используются для научных целей как источник органов для трансплантации, как производители терапевтических белков, для тестирования вакцин и др. (В качестве трансгенных животных чаще всего используются свиньи. Например, есть свиньи с человеческими генами — их вывели в качестве доноров человеческих органов.

Зелёные светящиеся свиньи — трансгенные свиньи, выведенны группой исследователей из Национального университета Тайваня путём введения в ДНК эмбриона гена зелёного флуоресцентного белка, позаимствованного у флуоресцирующей медузы. Поросята светятся зелёным цветом в темноте и имеют зеленоватый оттенок кожи и глаз при дневном свете. Основная цель выведения таких свиней, по заявлениям исследователей, — возможность визуального наблюдения за развитием тканей при пересадке стволовых клеток.)

 Составной частью проектов создания трансгенных организмов являются исследования и разработки в области генной терапии — лечебные процедуры, такие, как введение нужных трансгенов в клетки больного организма, замена больных генов здоровыми, адресная доставка лекарств в пораженные клетки. Трансгены, попадая в клетку, компенсируют ее генетические дефекты, ослабляя или усиливая синтез того или иного белка.

 

В дальнейшем трансгенные технологии предполагается использовать для решения широкого круга проблем. Так, для решения ряда экологических проблем разрабатывается программа конструирования трансгенных микробов, которые могут: активно поглощать СО2 из атмосферы, а следовательно, снижать парниковый эффект; активно поглощать воду из атмосферы, значит превращать пустыни в плодородные земли; конструировать трансгенные микроорганизмы, повышающие плодородие почв, утилизирующие загрязнители, конвертирующие отходы, ослабляющие проблему дефицита сырья (трансгенные микробы, синтезирующие каучук) и т.п.

Для повышения эффективности сельского хозяйства предполагается создавать трансгенные растения с повышенной пищевой и кормовой ценностью, трансгенные деревья для производства бумаги, для наращивания древесины, трансгенных животных с повышенной продуктивностью биомассы и молока, трансгенные виды ценных пород рыб и др.

 

Повышение эффективности здравоохранения с помощью трансгенных технологий предполагает, в частности, решение проблем контроля над наследственными заболеваниями (трансгенные вирусы для генной терапии, трансгенные микробы как живые вакцины и др.). Обсуждаются проблемы клонирования животных (и людей) и даже создания новых форм живого (для нового генетического кода синтезируются новые нуклеотиды и новые аминокислоты), способных осваивать другие планеты (обсуждается проект создания микробов для Марса, способных выделять углекислый газ, что приведет к потеплению марсианского климата).

В лабораторных условиях проведена значительная работа по конструированию трансгенных микробов с самыми разнообразными свойствами. Вместе с тем применение в открытой среде трансгенных микробов пока запрещено правовыми документами из-за неясности последствий, к которым может привести такой в принципе неконтролируемый процесс. К тому же сам мир микроорганизмов изучен крайне слабо: наука знает в лучшем случае около 10% микроорганизмов, а об остальных практически ничего не известно; недостаточно исследованы закономерности взаимодействия микробов между собой, а также микробов и других биологических организмов. Эти и другие обстоятельства обусловливают критическое отношение не только к трансгенным микроорганизмам, но и вообще к трансгенным биоорганизмам, волну протестов против трансгенных биотехнологий — далеко не все люди хотят жить в генетически модифицированном мире.

Высказываются — и вполне обоснованно — опасения, что, если трансгенные микробы и трансгенные растения и животные, не участвовавшие в эволюции наряду с «естественными» организмами, будут свободно выпущены в биосферу, это приведет к таким негативным последствиям, о которых ученые и не подозревают. Уже сейчас можно говорить о неизбежном переносе генов и трансгенных организмов в «обыкновенные», что может поменять генетическую программу животных и человека; об активизации дремлющих патогенных микробов и возникновении эпидемий ранее неизвестных заболеваний растений, животных и человека; о вытеснении природных организмов из их экологических ниш и новом витке экологической катастрофы; о появлении все уничтожающих на своем пути монстров; и т.д. На основе этого противниками генной инженерии делается вывод о необходимости запрета не только генных биотехнологий, но и научных исследований в данной области.

В свою очередь сторонники дальнейшего развития генной инженерии выдвигают свои аргументы. Они утверждают, что генная инженерия, по сути, занимается тем же (т.е. создает варианты генов), чем миллиарды лет занимается сама природа, создавая и отбирая в ходе эволюции генотипы биологических организмов; перенос генов между различными организмами также существует в природе (особенно между микробами и вирусами), поэтому появление трансгенных организмов в биосфере ничего нового не добавляет. В связи с этим они категорически возражают и против запрета исследований в области молекулярной генетики, и против запрета биотехнологий. Правда, наиболее осторожные из них допускают возможность ограничения или запрета отдельных исследований и технологических разработок по морально-этическим соображениям (например, клонирование человека) или в силу непредсказуемости последствий (исследования трансгенных микробов могут осуществляться лишь в лабораторных условиях, в открытую природу их выпускать рано).

 

Однако опасения от результатов трансгенных технологий являются неопределенными, а выгода, измеряемая многими миллиардами долларов, конкретна и очевидна, и в ряде стран усиливаются настроения, нацеленные на разрешение (при наличии научно-технической экспертизы) полевых исследований трансгенных микроорганизмов.

 

 К области биотехнологии относится и клонирование.

 

 

Клон — совокупность клеток или организмов, генетически идентичных одной родоначальной клетке. Клонирование — метод создания клонов путем переноса генетического материала из одной (донорской) клетки в другую клетку (энуклеированную яйцеклетку). При этом следует различать перенос ядра эмбриональной клетки и перенос ядра соматической клетки взрослого организма.

Энуклеация — методы, включающие полное удаление ядерного материала из яйцеклетки.

Прежде всего следует отметить, что клоны существуют в природе. Они образуются при бесполовом размножении (партеногенез) микроорганизмов (митоз, простое деление), вегетативном размножении растений.

Общеизвестный пример естественного клонирования — однояйцевые близнецы, развившиеся из одной яйцеклетки.

Имевший место относительно недавно клональный бум был связан с ответом на вопрос, можно ли не из половой, а из соматической клетки воссоздать организм? Иначе говоря, вопрос в следующем: рост, развитие и дифференциация эмбриона, онтогенез вызывают необратимые модификации генома в соматических клетках или не вызывают их? Ответ на этот вопрос мог быть получен только на основе экспериментальных исследований.

В 1997 г. британские ученые объявили об успешном сенсационном эксперименте: получении живого потомства (овечка Долли) после переноса ядра, взятого из соматической клетки взрослого животного (донорской клетке более 8 лет). В США были проведены успешные эксперименты по клонированию на мышах. Таким образом, современная биология доказала, что получение клонов млекопитающих принципиально возможно.

 

Полученные данные заставили по-новому посмотреть на процесс клеточной дифференциации. Можно сказать, «биологические часы» пошли вспять: развитие организма вновь может начинаться из генетического материала взрослой соматической клетки.

Различают полное (репродуктивное) и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном — организм воссоздаётся не полностью (например, лишь те или иные его ткани).

Репродукти́вное клони́рование предполагает, что в результате получается целый организм. Кроме научных целей оно может применяться для восстановления исчезнувших видов или сохранения редких видов.

Одно из перспективных применений клонирования тканей — клеточная терапия в медицине. Такие ткани, полученные из стволовых клеток пациента, могли бы компенсировать недостаток и дефекты собственных тканей организма и не отторгаться при трансплантации. Это так называемое терапевтическое клонирование.

Терапевти́ческое клони́рование предполагает, что в результате намеренно не получается целого организма. Его развитие останавливают заранее, а получившиеся эмбриональные стволовые клетки используют для получения нужных тканей или других биологических продуктов. Эксперименты показывают, что терапевтическое клонирование может быть с успехом применено для лечения некоторых заболеваний, считавшихся неизлечимыми.

Особо острые дискуссии развиваются вокруг проблемы клонирования человека. Пока отсутствуют технические возможности клонировать человека. Однако принципиально клонирование человека выглядит вполне выполнимым проектом. И здесь возникает множество уже не только научных и технологических проблем, но и этических, юридических, философских, религиозных.

 

Вместе с тем ученые очень осторожно относятся к перспективам клонирования, указывают на ограниченности этого метода. В частности, отмечают, что, исходя из закономерностей молекулярной генетики, можно сформулировать ряд предположений.

 

Во-первых, длительность жизни клонированного организма не будет равна времени жизни нормального организма, сформировавшегося из половых клеток, а в любом случае меньше ее (с учетом возраста донорского организма); так, овечка Долли умерла в 2003 г., прожив чуть более 5 лет, тогда как «естественные» овцы живут 14—15 лет. Ведь хромосомы соматической клетки значительно короче по сравнению с хромосомами половых (зародышевых) клеток.

Во-вторых, клонированный организм будет нести на себе груз генетических мутаций донорской клетки, а значит, ее болезни, признаки старения и т.п. Следовательно, онтогенез клонов не идентичен онтогенезу их родителей: клоны проходят другой, сокращенный и насыщенный болезнями жизненный путь. Можно утверждать, что клонирование не несет омоложения, возврата молодости, бессмертия. Таким образом, метод клонирования нельзя считать абсолютно безопасным для человека.

В-третьих, клонирование не есть копирование. Клон не является точной копией клонированного животного. Значит, человеческие клоны никогда не будут идентичны своим родителям, не говоря уже об их различном жизненном и социально-культурном опыте.

 

Вообще, что же такое человеческий клон? С одной стороны, он может быть назван ребенком своего родителя. С другой стороны, он же одновременно является и чем-то вроде однояйцевого генетического близнеца своего родителя. Это рождает целый ряд моральных и юридических проблем.

 

Самые острые среди них следующие: должен ли обладать человеческий клон всеми правами человека и гражданина; кто должен считаться его родителями, раз в его появлении на свет участвуют три особи: донор клетки, донор яйцеклетки и суррогатная мать; нужно ли в связи с этим, а если нужно, то в каком направлении, пересматривать соответствующие разделы конституционного, гражданского, семейного и наследственного права, в частности, какие (родительские) права (и обязанности) имеют «вкладчик генетического материала», донор яйцеклетки, суррогатная мать? Вполне возможно, что юристам придется рассмотреть и вопрос о праве собственности на свою ДНК — ведь клетки могут быть взяты без согласия человека.

Юридическая сторона проблемы запутывается еще больше, если к этому добавить, что, по-видимому, нет принципиальных препятствий клонированию человека от клеток умершего человека. (Кто имеет право распоряжаться генетическим материалом умершего для последующего его клонирования? Может ли индивид, чьи клетки были клонированы после смерти, считаться отцом (матерью)? И т.д.)

Существуют также этические, философские и религиозные аспекты проблемы клонирования: усложнение смысла личной индивидуальности и неповторимости; проблема семьи, ее роли в обществе; вопрос о пределах науки, практического могущества человека; нельзя не обратить внимания на ущемление чувств верующих, и на опасение, что человеческие клоны «нормальными» людьми не будут восприниматься как люди, и др. Не случайно многие общественные организации заявляют о моральной неприемлемости любых попыток клонирования человека.

Репродуктивное клони́рование человека — предполагает, что индивид, родившийся в результате клонирования, получает имя, гражданские права, образование,воспитание, словом — ведёт такую же жизнь, как и все «обычные» люди. Поэтому репродуктивное клонирование встречается со множеством этических, религиозных,юридических проблем, которые сегодня ещё не имеют очевидного решения. В некоторых государствах работы по репродуктивному клонированию запрещены на законодательном уровне.


Дата добавления: 2020-11-29; просмотров: 175; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!