Устройство, принцип работы простейшего теплообменника



Основные понятия о теплообменных аппаратах. Теплоносители. Классификация теплообменных аппаратов по принципу действия.

Теплообменный аппарат или теплообменник – это техническое устройство, в котором физический принцип передачи тепла от теплой среды к холодной без применения внешней энергии, превращен в технологический процесс. Он не является самостоятельным прибором и применяется в комплексе с другим тепловым оборудованием, поэтому должен соответствовать ему по параметрам.

Современные модели теплообменников характеризуются высоким уровнем безопасности, производительностью, минимальными потерями тепловой энергии в рабочем процессе, сниженными затратами теплоносителя и его циркуляции. Эти аппараты изготавливаются из новейших материалов, которые стойки к разрушительному коррозийному воздействию, что значительно увеличивает их ресурс. Чтобы понять работу этих устройств, рассмотрим теплообменный процесс.

 

Понятие теплообмена

Теплообмен представляет собой необратимый физический процесс, когда тепло передается от горячих тел или сред к холодным. На этом физическом законе базируется функционал теплообменного аппарата. Процесс происходит естественно, без совершения какой-либо работы над телом или средой. Он заканчивается, когда разницы температуры выравниваются. Теплообмен осуществляется 3-мя способами:

· За счет теплопроводности. В этом случае теплота переходит от одного тела к другому при контакте. Материалы, в частности нержавеющие стали, характеризуются разной способностью проводить тепло. Большими показателями характеризуется металлы, кроме свинца и ртути. Тепловой обмен осуществляется во взаимодействии молекул одного вещества с другим. Интенсивность теплообмена измеряется коэффициентом теплопроводности k, который лежит в диапазоне от k = 600…2000 (Вт/м2K) для вязких сред (например, сахарный сироп) до k = 2000…7000 (Вт/м2K) для воды.

· Излучением. Это электромагнитные волны, которые испускает вещество при нагревании до конкретных температурных значений. Эту энергию испускают любые тела, в том числе и биологические организмы. Чем выше температурные показатели у вещества, тем большие параметры у излучения. Эта энергия частично улавливается другими телами и частично отбрасывается. Темные предметы интенсивней поглощают тепловое излучение, светлые – больше отражают. Теплообмен излучением играет малозаметную роль и в программах по расчету теплообменников, как правило, не учитывается.

· Конвекция – это тип теплообмена, при котором выполняются обменные процессы тепловой энергии в потоках газообразных веществ и жидкостей. В твердых веществах конвекция не происходит. Конвекция бывает двух видов: естественная и вынужденная. Первая возникает при неоднородном разогреве. Вынужденный процесс происходит, когда газ или жидкость принудительно перемешиваются. На вынужденном принципе базируется работа теплообменных аппаратов.

 

Определение и классификация

Теплообменные аппараты – это технологические устройства, которые выполняют передачу тепла межу двумя средами. Установки различаются по принципу действия на два типа:

· Рекуператоры. В этих устройствах теплоносители отделены друг от друга стенкой. К ним относится большинство современных, в том числе теплообменники для горячего водоснабжения.

· Регенераторы. В этих аппаратах среды, между которыми происходит теплообмен, поочередно касаются одной и той же поверхности. По регенеративному принципу тепло накапливается в твердом веществе во время контакта с горячим носителем и отдается холодному.

Теплообменник работает и на нагрев, и на охлаждение. Этот фактор расширяет сферы применения установок. Теплообменные устройства применяются:

· в коммунальном хозяйстве;

· на нефтеперерабатывающих, нефтяных, химических предприятиях;

· в энергетической отрасли;

· на пищевых и фармацевтических комбинатах;

· в газовой промышленности.

Конкретная модель выбирается в зависимости от условий предстоящей эксплуатации. Разработаны такие аппараты, которые помимо теплообмена выполняют смежные функции. Теплообменные установки, действующие на рекуперативном принципе, подразделяются на виды по направлению движения среды:

1. прямоточные;

2. параллельное движение по одну маршруту;

3. противоточные (наиболее часто встречаются в пластинчатых теплообменниках);

4. противоточные, при встречном параллельном движении.

Устройство, принцип работы простейшего теплообменника

Теплообменные аппараты различаются устройством, но работают на одном принципе. Чтобы понять его, рассмотрим конструкцию простейшей установки. Элементарный прибор – это емкость с кожухом, охлаждающим и нагревающим. Рубашка окружает емкость и создает кольцевое пространство, в которое подается жидкость или пар (теплоноситель). Если в кольцевое пространство залить холодную воду, то среда в основной емкости охлаждается. Если рубашка будет наполнена теплоносителем, вещество в основном резервуаре будет нагреваться.

Схемы подключения

Теплообменный технический аппарат подключается к системе тремя способами:

1. Независимая конфигурация.

2. Параллельная конфигурация (или 1-ступенчатая) предполагает монтаж оборудования соответственно названию между двумя коммуникациями. Регулировка выполняется 1-им клапаном.
Смысл процесса – это постоянное фиксирование заданной температуры. Это простая структура, обеспечивающая хороший теплообмен, но потребляет большие объемы теплоносителя.

3. Двухступенчатая конфигурация рационально использует тепловую энергию обратного потока. Подготовка жидкости выполняется в группе из 2-х агрегатов.
Такой теплообменник называется моноблок, то есть 2 пластинчатых теплообменника, изготовленные на одной раме. Первая ступень теплообмена нагревает воду обратным потоком воды из системы отопления примерно до +40 градусов. Вторая ступень теплообмена продолжает процедуру и доводит показатели температуры воды до +60 градусов, что соответствует общепринятому нормативу по температуре ГВС. В этом случае между теплообменными аппаратами может быть установлено любой тип соединения. Этот способ характеризуется низким расходом теплоносителя – до 40% за счет использования оставшегося неиспользованным тепла обратного потока системы отопления, и, соответственно, высоким КПД.

 Грамотный выбор схемы подключения гарантирует экономичность эксплуатации. Для этого нужно правильно увязать гидравлические режимы горячего водоснабжения и отопления.

 


Дата добавления: 2020-11-23; просмотров: 88; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!