Термическая стойкость электрических аппаратов



Термической стойкостью электрических аппаратов называется способность их выдерживать без повреждений, препятствующих дальнейшей работе, термическое воздействие протекающих по токоведущим частям токов заданной длительности. Количественной характеристикой термической стойкости является ток термической стойкости, протекающий в течение определённого промежутка времени. Наиболее напряжённым является режим короткого замыкания, в процессе которого токи по сравнению с номинальными могут возрастать в десятки раз, а мощности источников теплоты – в сотни раз.

Термическая стойкость электрического аппарата зависит при этом не только от режима короткого замыкания, но и от теплового состояния, предшествующего режиму короткого замыкания.

При коротком замыкании электрические аппараты подвергаются значительным термическим воздействиям. Как правило, это аварий­ный режим работы и поэтому время его действия ограничивается до минимально возможного значения. Для большинства электрических аппаратов это время , т.е. не превосходит времени нагрева при адиабатическом процессе (нагрев без теплообмена с окружающей средой). Другими словами, режим короткого замыкания можно рассматривать как кратковременный режим работы, при котором температура элек­трического аппарата может достигать значений, превосходящих до­пустимую температуру в продолжительном режиме. Это возможно, поскольку время кратковременного режима обычно небольшое, за которое не может произойти существенных изменений в старении изоляции и других элементах, которые ограничивают температуру в продолжительном режиме работы.

Тем не менее, и в этом случае существуют ограничения, которые в основном диктуются температурой рекристаллизации материала токоведущих частей. В электрических аппаратах приняты следующие значения максимальной температуры при кратковременном режиме работы:

- неизолированные токоведущие части из меди и её сплавов – 300 °С;

- алюминиевые токоведущие части – 200 °С;- токоведущие части (кроме алюминиевых), соприкасающиеся с органической изоляцией или маслом – 250 °С.

Реле максимального тока РТ-40.

Максимальные реле тока РТ40 предназначены для использования в схемах релейной защиты и автоматики. Эти реле реагируют на повышение тока в контролируемой цепи и являются реле косвенного действия. Конструкция реле максимального тока РТ40 показана ни рис. 1.

Реле состоит из следующих основных элементов: П – образного стального сердечника 1 с установленными на нем катушками тока 2, подвижной системы, состоящей из якоря 3, подвижного контакта 5 и гасителя колебаний (вибрации) 22, алюминиевой стойки 23, упоров левого 6 и правого (на рис. 2.4, а не показан), изоляционной колодки 9 с расположенными на ней двумя парами неподвижных контактов (рис. 1, б) 7 и 8, регулировочного узла (рис. 1, в), состоящего из пружинодержателя 10, фасонного винта 11 с насаженной на него разрезной шестигранной втулкой 12, противодействующей спиральной пружины 14 и пружинящей шайбы 18, шкалы уставок 13 и указателя уставки 14, контактный узел (рис.1, г), состоящий из неподвижного пружинящего контакта 19, на одном изконцов которого приварена серебряная полоска, переднего упора 20 и заднего гибкого упора 21.

Рис. 1. Электромагнитное реле максимального тока серии РТ40: а - конструкция реле, б - изоляционная колодка с неподвижными контактами, в - регулировочный узел, г - контактный узел.

Реле тока РТ40 смонтировано в корпусе, состоящем из пластмассового цоколя и кожуха из прозрачного материала. Для снижения потерь в стали, возникающих из-за вихревых токов, сердечник набирается из пластин электротехнической стали, изолированных друг от друга.

Когда электромагнитная сила реле превышает механическую силу пружины, якорь притягивается к электромагниту. При этом подвижный контактный мост замыкает одну пару неподвижных контактов и размыкает вторую пару.

Реле предназначено для крепления в вертикальной плоскости, отклонение от вертикального положения из-за неуравновешенности подвижной системы реле приводит к дополнительной погрешности.

С осью якоря связан гаситель вибрации 22 (гаситель колебаний) в виде тороида, заполненного кварцевым песком. При любом ускорении якоря и связанной с ним подвижной системы часть кинетической энергии тратится на преодоление сил трения между песчинка ми. С помощью гасителя вибрации уменьшаются вибрации как всей подвижной системы, так и контактов при их включении.

Ток срабатывания регулируется за счет изменения натяга спиральной противодействующей пружины 4, которая прикреплена к якорю с помощью хвостовика 16. Натяг пружины фиксируется указателем 14.

Обмотка реле 2 разбита на две секции, которые при необходимости могут быть соединены последовательно или параллельно.

Уставка срабатывания реле серии РТ40 плавно регулируется натяжением пружины и ступенчато - переключением катушек обмотки с последовательной схемы на параллельную.

При переключении последовательного соединения секций обмоток на параллельное ток срабатывания увеличивается в два раза. Шкала уставок отградуирована для последовательного соединения секций катушек.

Реле выпускаются на токи от 0,1 до 200 А. Пределы уставок токов срабатывания реле при последовательном соединении катушек составляют 0,1 - 100 А, при параллельном соединении — 0,2 - 200 А. Технические характеристики реле тока серии РТ40 приведены в табл. 1

Время срабатывния не более 0,1 с при токе 1,2Iсраб и не более 0,03 с при 3Iсраб. Время возврата – не более 0,035 с. Масса реле не более 3,5 кг. Потребляемая мощность зависит от исполнения реле.

Контакты реле предназначены для коммутации в цепи постоянного тока мощностью 60 Вт, в цепи переменного тока нагрузки мощностью 300 ВА при напряжении от 24 до 250 В и токе до 2 А.

Рис. 2. Схемы соединения обмоток реле

В тех случаях, когда через реле может длительно протекать ток, многократно превышающий уставку срабатывания, применяют реле РТ40/1Д, в котором обмотка реле включается в контролируемую цепь через промежуточный трансформатор и выпрями тельный мост, смонтированные в общем корпусе. При опасных по термической стойкости токах сердечник трансформатора насыщается. Вследствие этого ток в обмотке реле остается неизменным, хотя в первичной обмотке трансформатора ток может продолжать расти.

В качестве органа, реагирующего на повышение тока в контролируемой цепи сверх допустимой величины при отстройке от внешних гармоник тока применяют реле РТ40Ф. В практике отклонение формы кривой переменного тока от синусоидальной может происходить как из-за искажения формы кривой э.д.с. генераторов, так и из-за наличия в цепях переменного тока нелинейных элементов. В реле РТ40Ф содержится специальный фильтр, не пропускающий в обмотку реле ток третьей и кратных ей гармоник. Фильтр подключен к вторичной обмотке промежуточного транс форматора.

На базе реле серии РТ40 выпускаются реле напряжения серии РН50. Конструктивно реле напряжения серии РН50 отличается от реле тока РТ40 тем, что в их конструкции отсутствует гаситель вибрации и другая схема включения обмоток. Сечение витков обмотки реле напряжения РН50 меньше чем у РТ40, т.к. реле РН50 включается параллельно контролируемой цепи и постоянно находится под напряжением, а реле тока - последовательно. Число витков одной катушки реле тока находится в пределах от единиц до сотен, а реле напряжения - от тысяч до нескольких тысяч.

Таблица 1. Технические характеристики реле тока серии РТ40

Тип реле

Пределы уставок, А

Последовательное соединение катушек

Ток срабатывания, А

Термическая стойкость, А


Дата добавления: 2020-04-25; просмотров: 359; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!