Пептидная теория строения белка.



 

До начала XX в. методов определения содержания аминокислот в белках не существовало, химия аминокислот была изучена весьма слабо, а попытки синтеза белковых веществ методологически были совершенно неправильными.

Приступая к систематическому изучению белков, Э. Фишер исходил из представления, что белки построены только из аминокислот, и попытался доказать наиболее вероятное, с его точки зрения, амидное соединение аминокислотных остатков. Он разработал метод разделения смесей аминокислот (так называемый эфирный метод) и использовал его для выделения и идентификации отдельных аминокислот из продуктов кислотного, щелочного или ферментативного разложения белков. После этого он перешел к решению ключевого вопроса о характере связей отдельных аминокислот в молекуле белка. Фишер пошел при этом по новому пути. Вместо применявшегося ранее исключительно аналитического метода исследования он использовал метод синтеза: он добивался получения из аминокислот все более и более сложных соединений и пытался их идентифицировать с продуктами частичного распада белковой молекулы – пептонами. В 1901 г. Э. Фишер и Э. Фурно сообщили о синтезе первого пептида – глицил‑глицина. В статье, положившей начало систематическому изучению синтетических полипептидов, авторы писали: «Чтобы в этой трудной области получить достоверные результаты, прежде всего необходимо найти метод, который позволил бы последовательно соединять друг с другом молекулы различных аминокислот при помощи связей ангидридного типа, при условии, что каждое из полученных промежуточных соединений может быть охарактеризовано»[56].

Разработав в течение 1902–1919 гг. несколько методов синтеза соединений аминокислот, так называемых пептидов и полипептидов различного строения, среди которых был, в частности, октадекапептид, состоящий из 18 аминокислотных остатков, Фишер доказал, что основным типом связи аминокислот в молекуле белка является амидная связь между аминогруппой одной аминокислоты и карбоксилом другой. Эту связь Фишер назвал пептидной. Пептидная теория удачно объяснила многие основные свойства белковых веществ – как химические и физико‑химические, так и биологические.

В 1925–1929 гг. А.Р. Кизель опроверг ошибочное представление о том, будто непременной основой всякой протоплазмы является особое тело белковой природы – пластин, с которым связаны ее важнейшие структурные и функциональные особенности. Благодаря исследованиям Кизеля изучение белков стало на правильный путь (формирование современных представлений о строении и функциональной роли белков изложено в главе 23).

 

 

Первые успехи в изучении природы биокаталитических реакций. Открытие специфичности действия ферментов.

 

В последней четверти XIX в. было установлено, что некоторые химические реакции, с большой легкостью протекающие в организме, чрезвычайно трудно осуществить вне его. На ранних этапах развития энзимологии представление об универсальности ферментативных механизмов оспаривалось вследствие того, что исследования ферментов связывались с отдельными технологическими или физиологическими процессами. Было распространено, например, мнение, что функция ферментов в процессах пищеварения ограничивается разложением пищи. Открытие и изучение окислительных ферментов в последней четверти XIX в. привели к представлению о каталитическом характере ферментативных реакций и выявили их широкое распространение в природе.

Доказательство того, что ферментативные реакции являются разновидностью химических реакций, имело принципиальное значение в борьбе с витализмом. В 1890 г. Ч. О’Селливан и Ф. Томпсон провели исследование действия дрожжевой инвертазы чисто количественными методами и пришли к заключению, что инверсия следует классическим химическим закономерностям и представляет собой мономолекулярную реакцию. В 1892 г. Г. Тамман сформулировал положение о том, что «неорганизованные ферменты ускоряют гидролитические реакции так же, как и кислоты»[57].

Впервые на значение возможности осуществления обратимых биокаталитических реакций указал в 1878 г. А.Я. Данилевский, исследуя ресинтез белков из продуктов их распада в присутствии протеолитических ферментов. Открытие синтетических возможностей ферментов было подтверждено работами А.К. Хилла, осуществившего ферментативный синтез мальтозы (1898).

Изучая строение сахаров, Э. Фишер начал в 1894 г. ряд исследований, касающихся действия на них ферментов. Он убедился, что разные субстраты по‑разному атакуются ферментами, а последние в свою очередь обладают избирательностью при действии на различные субстраты. В итоге он пришел к открытию специфичности действия ферментов. Это открытие сделало возможным изучение пределов действия ферментов и внесло гораздо большую определенность в характеристики отдельных катализируемых ферментами реакций и самих ферментных систем.

Исследования Фишера развивали уже сложившуюся тенденцию химического подхода к исследованиям ферментов. Его знаменитый афоризм о том, что фермент подходит к субстрату, как ключ к замку, способствовал развитию представлений о стерическом соответствии между ферментом и субстратом. Под влиянием открытий Фишера шло быстрое проникновение достижений химии биологически важных соединений в энзимологию, что привело в итоге к радикальной перестройке всей системы взглядов на методы изучения реакций обмена веществ.

Ученик Фишера Э. Армстронг в 1904 г. установил, что специфичность проявляется и при торможении ферментативной деятельности аналогами субстрата. Его работы так же, как и исследования А. Брауна (1902), легли в основу гипотез о механизме действий ферментов и образовании фермент – субстратных комплексов, что в свою очередь позволило развить представления о кинетике и механизме действия ферментов задолго до выделения их в чистом виде. Так, В. Анри (1903) впервые вывел кинетические уравнения ферментативной реакции, а Л. Михаэлис и М. Ментен (1913) разработали первую кинетическую теорию действия ферментов.

Успехи органического синтеза после создания А.М. Бутлеровым теории химического строения, возникновение стереохимии и совершенствование органического анализа позволили к концу XIX в. развернуть широкие исследования, в результате которых было открыто строение важнейших химических компонентов организма и заложены основы дальнейшего прогресса в изучении обменных процессов.

На рубеже XIX и XX вв. первые успехи в расшифровке биохимических механизмов жизнедеятельности получили противоречивые истолкования. С одной стороны, их совершенно справедливо рассматривали как важное достижение на пути создания более общих представлений о химических механизмах сложных биологических процессов, как закономерную ступень познания сущности жизни и процессов жизнедеятельности. С другой стороны, их или истолковывали в виталистическом духе, как это сделал, например, лидер неовитализма Г. Бунге, или рассматривали как свидетельство торжества механистического подхода к изучению живой природы. Однако, если в XIX в. приверженцы виталистических и механистических концепций пытались найти истину в споре друг с другом, то с начала XX в. решающее значение в определении места химических закономерностей в жизнедеятельности организмов приобрел эксперимент.

 

 


Дата добавления: 2020-04-25; просмотров: 229; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!