Комплексообразующая способность s-, р- и d- элементов



Комплексообразующая способность катионов определяется следующими факторами:

Заряд катиона, радиус катиона и электронная конфигурация катиона.

Чем больше заряд катиона и меньше радиус, тем прочнее связь комплексообразователя с лигандами. Поэтому катионы s- элементов (К+, Nа+, Са+2, Мg+2 и др.) обладающие относительно большим радиусом и малым зарядом, имеют низкую комплексообразующую способность. Катионы d-элементов (Со+3, Рt+4, Сr+3и др.), имеющие, как правило небольшой радиус и высокий заряд, являются хорошими комплексообразователями.

d-элементы имеют большое количество валентных орбиталей, среди которых имеются свободные орбитали и с неподелёнными электронными парами. Поэтому они одновременно могут быть и донорами и акцепторами. Если аналогичной возможностью обладает и лиганд, то одновременно с σ- связью (лиганд донор, а комплексообразователь является акцептором), образуюется и π-связь (лиганд акцептор, а комплексообразователь – донор). При этом происходит увеличение кратности связи, что обуславливает высокую прочность d- элементов со многими лигандами. Эта связь называется дативной связью.

Характер химической связи в комплексных соединениях.

Связь между комплексообразователем и лигандами осуществляется, посредством перекрывания электронных облаков. Связь, образованная по обменному механизму соответствует вернеровской главной валентности. Связь, образованная по донорно акцепторному механизму – побочной валентности; при этом лиганд является донором, а комплексообразователь акцептором.

Связь по донорно – акцепторному механизму может возникнуть и между нейтральными молекулами, если одна имеет атом со свободной орбиталью, а другая не поделённую электронную пару.

Следовательно: причина комплексообразования – валентная ненасыщенность атомов. Увеличение валентной насыщенности атомов в процессе комплексообразования ведёт к устойчивости комплексов.

Поскольку комплексообразователь в большинстве случаев предоставляет для образования связей неравноценные орбитали, то происходит их гибридизация, а тип гибридизации определяет геометрию молекул.

sp [KL2]                                 линейная молекула [Ag(NH3)2]+

sp3 [KL4]                       тетраэдр или квадрат [Cu(H2O)4]2+

3d2 [Kl6]                     октаэдр хАу(СТ)6ъ2+

Внешнеорбитальные и внутриорбитальные комплексы

Для катионов d- элементов характерны октаэдрические комплексы. При их образовании возможны два типа гибридизации: d23 и sр3d2, в зависимости от того, какие d-орбитали комплексообразователя доступны для лиганд.

Гибридизация d23 осуществляется в том случае, если в образовании σ связей участвуют s и р орбитали внешнего уровня и две d-орбитали предпоследнего уровня. Этот вид гибридизации называется внутренней гибридизацией, а образующиеся комплексы внутриорбитальными.

Например: [Cr(NH3)6]3+

Cr3+ гибридизирующиеся орбитали

[Cr(NH3)6]3+ электронные пары от лигандов

 

 

При внутренней гибридизации лиганды прочно связаны с комплексообразователем, поэтому внутриорбитальные комплексы отличаются высокой устойчивостью.

Если на образование σ-связей комплексообразователь поставляет только орбитали внешнего внешнего уровня, то осуществляется 3d2 гибридизация. Её называют внешней, а образующиеся комплексы внешнеорбитальными. Такие комплексы образуют d-элементы с полностью заселёнными d подуровнями. Например: [Cd(Cl)6]4-

Cd2+ гибридизирующиеся орбитали

 

 

[Cu(Cl)6]4-

электронные пары от лигандов

Энергия связей, образованных при внешней гибридизации орбиталей комплексообразователя ниже, чем при внутренней гибридизации, поэтому внешнеорбитальные комплексы обладают меньшей прочностью по сравнению с внутриорбитальными.

Если у катиона d- элемента d подуровень заселен неспаренными электронами, то тип гибридизации определяется природой лиганда. Лиганды, обладающие достаточной электронодонорной способностью, могут «вытеснить» электроны с двух орбиталей d подуровня и заставить их спариться на остальных двух орбиталях. При этом нарушается правило Гунда. Такой способностью обладают, например:

цианид-ионы, поэтому они образуют внутриорбитальные комплексы. Например: [Fe(CN)6]4-:

Fe2+

[Fe(CN)6]4-

Если же лиганд не обладает достаточной электронодонорной способностью, то образуется внешнеорбитальный комплекс, например: [Fe(Н2О)6]2+

 [Fe(Н2О)6]2+

Число неспаренных электронов в процессе комплексообразования в этом случае не меняется.

 


Дата добавления: 2019-11-25; просмотров: 4852; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!