Тема 7. Концепция самоорганизации и эволюция



 

Вопрос 1. Формирование идей самоорганизации

Вопрос 2. Два подхода к исследованию самоорганизации. понятие самоорганизации

Вопрос 3. Основы синергетики

Вопрос 4. Самоорганизация в диссипативных структурах

Вопрос 5. Самоорганизация человеческого общества

Литература

Вопрос 1. Формирование идей самоорганизации

 

Ранние подходы к изучению самоорганизации в отдельных науках ясно обозначились еще в XVIII в. Они связаны, прежде всего, с деятельностью основоположника классической политической экономии Адама Смита (1723-1790), который в своём главном труде "Исследование о природе и причинах богатства народов" ясно выразил идею о том, что спонтанный порядок на рынке является результатом взаимодействия различных, часто противоположных стремлений, целей и интересов многочисленных его участников. Именно такое взаимодействие приводит к установлению того никем не предусмотренного и незапланированного порядка на рынке, который выражается в равновесии спроса и предложения. Эту главную свою мысль А. Смит выразил в форме метафоры "невидимой руки", которая регулирует цены на рынке.

Каждый отдельный человек старается употреблять свой капитал так, чтобы продукт его обладал наибольшей стоимостью. Обычно он и не имеет в виду содействовать общественной пользе и не сознает, насколько содействует ей. Он имеет в виду лишь собственную выгоду, причем в этом случае он невидимой рукой направляется к цели, которая не входила в его намерения. Преследуя свои собственные интересы, он часто более действенным образом служит интересам общества, чем тогда, когда сознательно стремится служить им.

Аналогичные идеи относительно самоорганизации норм нравственности в обществе высказывали в том же веке шотландские моралисты, которые подчеркивали, что принципы нравственного поведения людей не создаются правителями, политиками и иными общественными деятелями, а формируются медленно и постепенно в ходе самоорганизации людей под влиянием изменяющихся условий их жизни.

Важно при этом обратить внимание на то, что идеи самоорганизации, самосовершенствования и улучшения деятельности социальных систем и общественных учреждений упомянутые ученые связывают с эволюционными процессами, которые происходят в жизнедеятельности людей. Конечно, чаще всего идеи самоорганизации и эволюции не были четко и ясно выражены, они скорее были результатом интуитивного прозрения, чем строгого научного исследования. Тем не менее, от этого их ценность не уменьшается, ибо они подготовили почву для будущих исследований процессов самоорганизации и эволюции.

Но после открытия Кельвином и Клаузиусом второго начала термодинамики господствовало достаточно пессимистическое представление, что базовым состоянием материи является состояние термодинамического равновесия (хаоса) - самого простого из всех возможных состояний системы, не обменивающейся энергией и веществом с окружающей средой. Господствующей тенденцией материи считалось стремление к разрушению спонтанно возникшей упорядоченности (в результате случайной маловероятной флуктуации) и возвращению к исходному хаосу. Такой взгляд на вещи сформировался под воздействием равновесной термодинамики.

Эта наука занимается изучением процессов взаимопревращения различных видов энергии. Ею установлено, что взаимное превращение тепла и работы неравнозначно. Работа может полностью превратиться в тепло трением или другими способами, а вот тепло полностью превратить в работу принципиально невозможно. Это означает, что во взаимопереходах одних видов энергии в другие существует выделенная самой природой направленность. Знаменитое второе начало (закон) термодинамики в формулировке немецкого физика Р. Клаузиуса (1822-1888 гг.) звучит так: "Теплота не переходит самопроизвольно от холодного тела к более горячему".

Закон сохранения и превращения энергии (первое начало термодинамики), в принципе, не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объеме. Но в реальности это никогда не происходит. Данную односторонность, однонаправленность перераспределения энергии в замкнутых системах и подчеркивает второе начало термодинамики.

Для отражения этого процесса в термодинамику было введено понятие - "энтропия". Под энтропией стали понимать меру беспорядка системы. Более точная формулировка второго начала термодинамики приняла вид: при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия возрастает.

Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это и есть наиболее простое состояние системы, или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу.

Такие представления весьма соответствовали религиозным догматам.

Общий вывод достаточно печален: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех ее видов в тепловую энергию, которая рассеется, т.е. в среднем равномерно распределится между всеми элементами системы, что и будет означать термодинамическое равновесие, или хаос. Если Вселенная замкнута, то ее ждет именно такая незавидная участь. Из хаоса, как утверждали древние греки, она родилась, в хаос же, по предположению классической термодинамики, и возвратится.

Возникает, правда, вопрос: если Вселенная эволюционирует только к хаосу, то как она могла возникнуть и организоваться до нынешнего упорядоченного состояния. Но этим вопросом классическая термодинамика не задавалась, ибо формировалась в эпоху, когда нестационарный характер Вселенной не обсуждался. В это время единственным немым укором термодинамике служила дарвиновская теория эволюции. Ведь предполагаемый ею процесс развития растительного и животного мира характеризовался непрерывным усложнением, нарастанием высоты организации и порядка. Живая природа почему-то стремилась прочь от термодинамического равновесия и хаоса. Налицо была явная нестыковка законов развития неживой и живой природы.

После замены модели стационарной Вселенной на развивающуюся, в которой ясно просматривалось нарастающее усложнение организации материальных объектов - от элементарных и субэлементарных частиц в первые мгновения после Большого взрыва до звездных и галактических систем, - несответствие законов стало еще более явным. Ведь если принцип возрастания энтропии столь универсален, как же могли возникнуть такие сложные структуры? Случайным "возмущением" в целом равновесной Вселенной их не объяснить. Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции.

Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.

Эволюционная теория Дарвина послужила мощным толчком для развертывания исследований о механизмах развития различных природных и социальных систем. Если физические и химические методы исследования многое дали для анализа структуры и функционирования живых систем, то эволюционная концепция биологии заставила физиков и химиков по-новому взглянуть на объекты своих исследований и природу в целом. Они вынуждены были считаться с тем глубоким противоречием, которое существовало между их взглядами и достоверными фактами и теоретически обоснованными утверждениями дарвиновской эволюционной теории. Формирование идей самоорганизации в физике было продиктовано как раз стремлением преодолеть указанное противоречие, которое свидетельствовало о том, что некоторые ее основополагающие понятия и принципы имеют слишком идеализированный характер и неадекватно отображают исследуемую реальность.

Прежде всего понятие об обратимых процессах, прочно утвердившееся в механике, не учитывало реального характера процесса изменении в природе. Действительно, для механического описания процессов достаточно задать лишь начальные координаты и скорость движущегося тела. Тогда с помощью системы дифференциальных уравнений, описывающих движение, можно однозначно определить положение тела в любой момент как в прошлом, так и в настоящем. Поэтому фактор времени по сути дела не играет никакой роли в механике.

Такое представление крайне упрощает свойства реальных процессов, и в середине прошлого века физики в связи с изучением тепловых процессов вынуждены были ввести фактор времени, который отражал бы реальные изменения, происходящие в ходе эволюции системы. Но представление об эволюции в классической термодинамике, изучающей изолированные системы, было совершенно чуждо механике. В то же время эволюция в термодинамике понималась совсем иначе, чем в биологии. В самом деле, если в теории Дарвина эволюция приводила к совершенствованию и усложнению живых систем в результате их адаптации к изменяющимся условиям окружающей среды, то в классической физике она связывалась с дезорганизацией и разрушением системы. Такое представление вытекало из второго начала термодинамики, согласно которому закрытая система постепенно эволюционирует в сторону беспорядка и дезорганизации

Резкое противоречие между биологической и физической эволюцией удалось разрешить только после того, когда физика обратилась к понятию открытой системы, то есть системы, которая обменивается с окружающей средой веществом, энергией и информацией. При определенных условиях в открытых системах могут возникнуть процессы самоорганизации в результате получения новой энергии и вещества извне и диссипации, или рассеяния, использованной в системе энергии. Таким образом, было установлено, что ключ к пониманию процессов самоорганизации содержится в исследовании процессов взаимодействия системы с окружающей средой.

К установлению общего взгляда на процессы самоорганизации разные ученые шли разными путями. Автор самого термина "синергетика" немецкий физик Герман Хакен, работавший в лабораториях фирмы Белла над новыми источниками света, исследовал механизмы кооперативных процессов, которые происходят в твердотельном лазере. Он выяснил, что частицы, составляющие активную среду резонатора, под воздействием внешнего светового поля начинают колебаться в одной фазе. В результате этого между ними устанавливается когерентное, или согласованное, взаимодействие, которое приводит в конечном итоге к их кооперативному, или коллективному, поведению.

Однако в первое время, по его собственному признанию, он ясно не понимал, что подобные процессы могут происходить и в других системах, а лазер - лишь один из типичных их представителей.

Видный теоретик самоорганизации И.Р. Пригожин пришел к своим идеям из анализа специфических химических реакций, которые приводят к образованию определенных пространственных структур с течением времени при изменении концентрации реагирующих веществ. Вместе со своими сотрудниками он построил математическую модель таких реакций, которые впервые экспериментально были изучены нашими отечественными учеными Б. Белоусовым и А. Жаботинским.

Структуры и системы, возникающие при этом, И.Р. Пригожин назвал диссипативными, поскольку они образуются за счет диссипации, или рассеяния, энергии, использованной системой, и получения из окружающей среды новой, свежей энергии. За исследования по термодинамике диссипативных структур И.Р. Пригожину была присуждена Нобелевская премия по химии.

Другой видный теоретик самоорганизации немецкий ученый М. Эйген убедительно доказал, что открытый Ч. Дарвином принцип отбора продолжает сохранять свое значение и на микроуровне. Поэтому он имел все основания утверждать, что генезис жизни есть результат процесса отбора, происходящего на молекулярном уровне. Он показал, что сложные органические структуры с адаптационными характеристиками возникают благодаря эволюционному процессу отбора, в котором адаптация оптимизируется самими структурами. Предпосылками для осуществления такой самоорганизации макромолекул являются взаимодействие системы со средой или открытость для обмена веществом и энергией, автокатализ, мутации и естественный отбор.

В начале 1960-х гг. Е. Лоренц, изучая компьютерные модели предсказания погоды, пришел к важному открытию, что уравнения, описывающие метеопроцессы, при почти тех же самых начальных условиях приводят к совершенно разным результатам. А это свидетельствовало о том, что детерминистская система уравнений обнаруживает хаотическое поведение. Отсюда был сделан вывод, что хаос также характеризуется определенным порядком, который, однако, имеет более сложный характер. Его можно рассматривать как вид регулярной нерегулярности.

Мы видим отсюда, что исследования процессов самоорганизации в начале 1960-х гг. ограничивались отдельными естественнонаучными и инженерными дисциплинами. Сами исследователи не придавали им обобщающего характера и потому никто тогда не предвидел, что из них в 70-х гг. сформируется единая парадигма междисциплинарного исследования. Однако постепенно ученые в своих исследованиях стали выходить за рамки своих дисциплин, начали замечать аналогию между понятиями и уравнениями, которые применялись для анализа разных по конкретному содержанию процессов. Таким образом, медленно, но неуклонно формировалось убеждение, что во всех этих исследованиях существует единое концептуальное ядро, которое служит общей их основой. В сущности именно это ядро и составляет парадигму исследования процессов самоорганизации.

В настоящее время концепция самоорганизации получает все большее распространение не только в естествознании, но и в социально-гуманитарном познании. Поскольку большинство наук изучают процессы эволюции систем, постольку они вынуждены анализировать и механизмы их самоорганизации. А общество и человек тоже являются системами, причем наиболее сложными.

Концепция самоорганизации становится теперь парадигмой исследования обширного класса систем и совершающихся в них процессов и явлений. Обычно под парадигмой в науке подразумевают фундаментальную теорию, которая применяется для объяснения широкого круга явлений, относящихся к соответствующей области исследования. Примерами таких теорий могут служить классическая механика Ньютона или эволюционное учение Дарвина. Сейчас значение понятия парадигмы еще больше расширилось, поскольку оно применяется не только к отдельным наукам, но и к междисциплинарным направлениям исследований. Типичными примерами таких междисциплинарных парадигм являются возникшая полвека назад кибернетика и появившаяся четверть века спустя синергетика.

 

Вопрос 2. Два подхода к исследованию самоорганизации. Понятие самоорганизации

 

И кибернетика и позднее возникшая синергетика развиваются в русле общего системного движения науки, исследуя такие важнейшие аспекты систем, как их динамическая устойчивость, самоорганизация и организация и особенно механизм возникновения новых системных качеств.

С интересующей нас точки зрения отличие кибернетики от синергетики заключается прежде всего в том, что первая акцентирует внимание на анализе динамического равновесия в самоорганизующихся системах. Поэтому она опирается на принцип отрицательной обратной связи, согласно которому всякое отклонение системы корректируется управляющим устройством после получения Информации об этом. В этом смысле допустимо, пожалуй, также говорить о самоорганизации, но здесь эта самоорганизация заложена в систему самой природой, как это видно на примере гомеостаза в функционировании живых систем, либо она заранее планируется и конструируется человеком, например, в автоматах и других подобных устройствах.

В синергетике в противоположность кибернетике исследуются механизмы возникновения новых состояний, структур и форм в процессе самоорганизации, а не сохранения или поддержания старых форм. Именно поэтому она опирается на принцип положительной обратной связи, когда изменения, возникшие в системе, не подавляются или корректируются, а, наоборот, постепенно накапливаются и в конце концов приводят к разрушению старой и возникновению новой системы.

Для характеристики самоорганизующихся процессов в литературе употребляются разные термины, начиная от синергетических и кончая нелинейными неравновесными системами или даже системами автопоэтическими или самообновляющимися. Но в целом все они выражают одну и ту же идею, так как речь в них идет о сложноорганизованных системах, являющихся системами открытыми, находящимися вдали от точки термодинамического равновесия.

Хотя для всех них пока не существует единой фундаментальной теории, в общую парадигму их объединяет принадлежность к сложноорганизованным системам.

Итак, сегодня наука считает все известные системы от самых малых до самых больших открытыми, обменивающимися энергией и (или) веществом с окружающей средой и находящимися, как правило, в состоянии, далеком от термодинамического равновесия. А развитие таких систем, как стало известно, протекает путем образования нарастающей упорядоченности. На такой основе возникло представление о самоорганизации вещественных систем.

В широком плане понятие самоорганизации отражает фундаментальный принцип Природы, лежащий в основе наблюдаемого развития от менее сложных к более сложным и упорядоченным формам организации вещества. Но у этого понятия есть и более узкое значение, непосредственно характеризующее способ реализации перехода от простого к более сложному. В таком значении самоорганизацией называют природные скачкообразные процессы, переводящие открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности по сравнению с исходным. Критическое состояние - это состояние крайней неустойчивости, достигаемое открытой неравновесной системой в ходе предшествующего периода плавного, эволюционного развития.

Прежде чем привести примеры самоорганизации, необходимо уточнить, что же считать усложнением элементов и систем, их переходом от более простых к более сложным формам.

Понятия "простой" и "сложный" всегда относительны, их смысл выявляется только при сопоставлении свойств родственных объектов. Так, протон сложен относительно кварков, но прост относительно атома водорода; атом сложен относительно протона и электрона, но прост относительно молекулы и т.д. При этом мы видим, что сложные объекты обладают новыми качествами, которых лишены исходные простые элементы, составляющие их. Таким образом, Природу можно представить как цепочку нарастающих по сложности элементов.

Процессы объединения "простых" элементов с образованием "сложных" систем протекают лишь при выполнении определенных условий. Например, если температура (энергия) окружающей среды превышает энергию связи двух частиц, то они не смогут удерживаться вместе. При снижении температуры до значений, при которых энергия среды и энергия связи частиц окажутся равными, наступает критический момент, и дальнейшее снижение температуры делает возможным процесс фиксирования частиц (например, протона и электрона) в атоме водорода.

Намного сложнее обстоит дело при соединении атомов в молекулы. Здесь также существуют пороговые значения параметров (температуры, плотности), называемые критическими значениями, которые отделяют область возможного образования от области, где этот процесс невозможен.

Затем идут новые уровни сложности и упорядоченности вещества. Наиболее высокий уровень упорядоченности, известный науке, демонстрирует феномен жизни и порождаемый им разум. Долгое время считалось, что феномен жизни противоречит господствовавшим физическим представлениям о стремлении материи к хаосу. Жизнь представлялась упорядоченным и закономерным поведением материи, основанным не только на тенденции переходить от упорядоченности к неупорядоченности, но частично и на существовании упорядоченности, которая поддерживается все время. Эта проблема впервые была четко сформулирована в книге известного австрийского физика-теоретика Э. Шредингера (1887-1961 гг.) "Что такое жизнь?". Анализ, проделанный им, показывал, что феномен жизни разрушает постулат о единственной тенденции развития вещества - от случайно возникшей упорядоченности к неупорядоченности, рожденный классической термодинамикой. Живые системы оказались способны поддерживать упорядоченность вопреки "естественной" тенденции.

После выхода книги Шредингера создалась любопытная ситуация: за живым веществом признавалась способность проявлять как тенденцию к разрушению упорядоченности, так и тенденцию к ее сохранению. А за неживой природой по-прежнему признавалась только одна тенденция - неизбежно разрушать любую упорядоченность, возникшую в результате случайных отклонений от равновесия. И лишь сравнительно недавно стало ясно, что тенденция к созиданию, к переходу от менее упорядоченного состояния к более упорядоченному, то есть самоорганизация, присуща неживой природе в той же мере, что и живой. Нужны лишь подходящие условия для ее проявления.

Выяснилось, что все разномасштабные самоорганизующиеся системы, независимо от того, каким разделом науки они изучаются, будь то физика, химия, биология или социальные науки, имеют единый алгоритм перехода от менее сложных и менее упорядоченных к более сложным и более упорядоченным состояниям. Тем самым открывается возможность единого теоретического описания подобных процессов во времени и пространстве. Разработка теории самоорганизации началась буквально в последние годы, причем по нескольким, сходящимся направлениям. Это синергетика (Г. Хакен), термодинамика неравновесных процессов (И.Р. Пригожин), теория катастроф (Р. Том). Изложим кратко сущность этих теорий, практическое значение которых теперь уже никто из ученых не отрицает.

 

Вопрос 3. Основы синергетики

 

Синергетика (это понятие означает кооперативность, сотрудничество, взаимодействие различных элементов системы) - по определению ее создателя Г. Хакена - занимается изучением систем, состоящих из многих подсистем самой различной природы, таких как электроны, атомы, молекулы, клетки, нейтроны, механические элементы, фотоны, органы животных и даже люди. Это наука о самоорганизации простых систем, о превращении хаоса в порядок.

В синергетике возникновение упорядоченных сложных систем обусловлено рождением коллективных типов поведения под воздействием флуктуации, их конкуренцией и отбором того типа поведения, который оказывается способным выжить в условиях конкуренции. Как замечает сам Хакен, это приводит нас в определенном смысле к своего рода обобщенному дарвинизму, действие которого распространяется не только на органический, но и на неорганический мир.

Объект изучения синергетики, независимо от его природы, обязан удовлетворять следующим требованиям:

1) открытость - обязательный обмен энергией и (или) веществом с окружающей средой;

2) существенная неравновесность - достигается при определенных состояниях и при определенных значениях параметров, характеризующих систему, которые переводят ее в критическое состояние, сопровождаемое потерей устойчивости;

3) выход из критического состояния скачком, в процессе типа фазового перехода, в качественно новое состояние с более высоким уровнем упорядоченности.

Скачок - это крайне нелинейный процесс, при котором малые изменения параметров системы (обычно они называются управляющими параметрами) вызывают очень сильные изменения состояния системы, ее переход в новое качество. Например, при снижении температуры воды до определенного значения она скачком превращается в лед. Около критической точки перехода достаточно изменить температуру воды (управляющий параметр) на доли градуса, чтобы вызвать ее практически мгновенное превращение в твердое тело.

Первоначально сферой приложения синергетики была квантовая электроника и радиофизика. Примером самоорганизации может служить система, изучаемая в разделах квантовой электроники, - лазер. Этот прибор создает высокоорганизованное оптическое излучение. Традиционные источники света - лампы накаливания, газоразрядные лампы - создают оптические излучения за счет процессов, подчиняющихся статистическим законам. Так, в нагретой до высокой температуры среде возбужденные атомы и ионы спонтанно излучают кванты света с различными длинами волн во всех направлениях. Только малую часть из них мы воспринимаем как видимый свет. Уровень организации подобной среды крайне низок, упорядоченность мала. Для лазерной активной среды, которая должна в принципе находиться в сильно неравновесном состоянии, характерна высокая упорядоченность атомных, ионных или молекулярных избирательно возбуждаемых состояний, что достигается направленным введением в среду организованного потока энергии (накачка). При выполнении определенного условия в среде лавинообразно нарастает вынужденное излучение почти монохроматических квантов света, движущихся в одном направлении. Лазерная генерация возникает скачком после того, как плотность вводимой в среду энергии накачки превысит пороговое значение, зависящее от свойств активной среды, характера накачки и параметров оптического резонатора, в который помещают активную среду для усиления эффекта. Излучение выходит в виде узконаправленного луча.

Подобные же процессы есть в химии - смешивание жидкостей разных цветов, когда попеременно получается жидкость то красного, то синего цвета; в биологии - мышечные сокращения, электрические колебания в коре головного мозга, явление морфогенеза (отдельные клетки бывают только недифференцированными, специализация развивается в соответствующем окружении других клеток), динамика популяций (временные колебания численности видов) и т.д.

Самоорганизующиеся системы обретают присущие им структуры или функции без какого бы то ни было вмешательства извне. Обычно эти системы состоят из большого числа подсистем. При изменении определенных условий, которые называются управляющими параметрами, в системе образуются качественно новые структуры. Эти системы обладают способностью переходить из однородного, недифференцированного состояния покоя в неоднородное, но хорошо упорядоченное состояние или в одно из нескольких возможных состояний.

Этими системами можно управлять, изменяя действующие на них внешние факторы. Поток энергии или вещества уводит физическую, химическую, биологическую или социальную систему далеко от состояния термодинамического равновесия. Изменяя температуру, уровень радиации, давление и т.д., мы можем управлять системами извне.

Самоорганизующиеся системы способны сохранять внутреннюю устойчивость при воздействии внешней среды, они находят способы самосохранения, чтобы не разрушаться и даже улучшать свою структуру.


Дата добавления: 2019-09-13; просмотров: 358; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!