Кеплер и др. и несуществующая проблема



  

Джино Сегре

Физик (Пенсильванский университет); автор книги Ordinary Geniuses: Max Dellbruck, George Gamov and the Origin of Genomics and Big Bang Cosmology («Обычные гении: Макс Дельбрюк, Джордж Гамов и происхождение геномики и космологии Большого взрыва »)

В 1595 году Иоганн Кеплер предложил глубокое, элегантное и красивое решение проблемы определения расстояния от Солнца до шести известных к тому времени планет. Поместив внутри сферы (как в русской матрешке) каждое из пяти тел Платона в определенном порядке – октаэдр, икосаэдр, додекаэдр, тетраэдр, куб, – он предположил, что последовательность их сферических радиусов будет иметь те же относительные пропорции, что и расстояния до планет. Конечно, глубокое, элегантное и красивое решение оказалось к тому же неверным, но, как звучит знаменитое высказывание персонажа Джо Брауна в финале фильма «В джазе только девушки», «у всех есть недостатки».

За пару тысяч лет до этого, в рассуждении, которое позднее получило название «Гармония сфер», Пифагор уже придумал решение этой задачи, связав данные расстояния с местами на струне, извлечение звука из которых было бы приятно слуху. Почти через 200 лет после Кеплера Иоганн Боде и Иоганн Титиус предложили, не вдаваясь в объяснения, простую числовую формулу, которая, по общему мнению, соответствовала этим расстояниям. Таким образом, предположение Кеплера не было ни первой, ни последней попыткой определить пропорции планетарных орбит, но в своем стремлении связать динамику с геометрией оно остается для меня самым глубоким, при этом простым и элегантным объяснением.

В строгом смысле ни одно из этих трех предположений нельзя назвать неверным. Они служат решениями несуществующей проблемы, так как теперь мы понимаем, что положение планет совершенно случайно и представляет собой побочный продукт развития пылевого диска, вращавшегося вокруг нашего новообразованного Солнца под действием гравитации, в современную планетарную систему. Понимание, что проблемы не существует, пришло с расширением наших представлений – от уникальности нашей планетарной системы до бесконечного количества подобных систем, разбросанных по бесчисленным галактикам, составляющим нашу Вселенную.

Я думал об этом, потому что вместе с многими моими коллегами – физиками‑теоретиками – посвятил значительную часть своей научной деятельности поискам масс так называемых элементарных частиц. Но, возможно, существует причина, освобождающая нас от этого занятия, – предположение, завоевывающее все большее признание, а именно что наша обозримая Вселенная представляет собой лишь случайный вариант бесчисленных вселенных, каждая из которых содержит кварки и лептоны с массами, имеющими различные значения. Просто так получилось, что по крайней мере в одной из многих вселенных эти значения позволяют существовать как минимум одной звезде и одной планете, на которой живут существа, озадаченные подобными проблемами.

Другими словами, проблема, казавшаяся нам важной, может перестать существовать по мере развития нашей концепции Вселенной, которая в таком случае расширится до концепции множества вселенных. Если это правда, то каковы наши перспективы на будущее? Я лишь надеюсь, что наши потомки будут лучше разбираться в подобных вопросах и улыбнутся нашим слабым попыткам найти глубокое, элегантное и красивое решение проблемы, которую они сочтут несуществующей.

 

Как могут сосуществовать несовместимые мировоззрения

  

Фримен Дайсон

Физик‑теоретик (Институт перспективных исследований); автор книги A Many Colored Glass: Reflections on the Place of Life in the Universe («Разноцветное стекло: отражения места жизни во Вселенной »)

Феномен, который я хочу объяснить, – это существование бок о бок двух совершенно несовместимых представлений о Вселенной. Одно из них – классическая картина нашего мира как подчиняющаяся всемирному тяготению совокупность объектов и явлений, которые мы способны видеть и ощущать. Другое – зависящая от вероятностей и неопределенностей квантовая картина атомов и излучений, которые ведут себя непредсказуемым образом.

Обе картины кажутся правдивыми, но взаимосвязь между ними – тайна.

Физики полагают, что мы должны создать единую концепцию, включающую в себя обе картины в качестве частных случаев. Эта единая концепция должна содержать квантовую теорию гравитации и допускать существование частиц, называемых гравитонами, сочетая особенности гравитации с квантовыми неопределенностями.

Я пытаюсь найти другое объяснение тайны. Мне хочется понять – если гравитон существует, можно ли его обнаружить?

Я не знаю ответа на этот вопрос, но у меня есть основания предполагать, что ответ отрицательный. Подтверждением служит устройство по обнаружению гравитационных волн под названием LIGO (Laser Interferometer Gravitatio nal‑Wave Observatory[24]), части которого находятся сейчас в штатах Луизиана и Вашингтон. Принцип действия LIGO – очень точное измерения расстояния между двумя зеркалами посредством отражения света от одного к другому. При прохождении гравитационной волны расстояние между зеркалами должно незначительно измениться. В действительности из‑за шумовых помех детекторы LIGO способны обнаружить лишь колебания, значительно более сильные, чем одиночная гравитационная волна. Но даже в совершенно бесшумной Вселенной я мог бы ответить на вопрос, способен ли идеальный детектор LIGO обнаружить гравитационную волну. Ответ – нет. В бесшумной Вселенной предел точности измерения расстояния определяется квантовыми неопределенностями в положениях зеркал. Для уменьшения квантовых неопределенностей зеркала должны быть тяжелыми. Простые подсчеты, основанные на известных законах гравитации и квантовой механики, приводят к впечатляющим результатам. Чтобы обнаружить единичную гравитационную волну с помощью LIGO, зеркала должны быть настолько тяжелыми, что смогут притянуть друг друга с необратимой силой и соединиться вместе, образовав черную дыру. Другими словами, сама природа запрещает нам обнаружить гравитационные волны подобным образом.

  Я предлагаю гипотезу, основанную на этом единственном мысленном эксперименте: единичные гравитоны не могут быть обнаружены никаким устройством. Если эта гипотеза справедлива, то она подразумевает, что квантовая теория гравитации не подлежит проверке, следовательно, с научной точки зрения бессмысленна. Классическая и квантовая Вселенные могут тогда мирно сосуществовать, потому что никакого несоответствия между двумя картинами мира никогда не обнаружится. Обе картины будут правдивы, а надежда на единую концепцию превратится в иллюзию.

 

Невероятная неопределенность

  

Сатьяджит Дас

Финансовый эксперт, консультант по рискам; автор книги Extreme Money: The Master of the Universe and the Cult of Risk («Экстремальные деньги. Хозяева Вселенной и культ риска »)

Неопределенность – это конец, который часто выглядит как начало. Ее совершенная красота – составная часть математики, методологии, философии, лингвистики и судьбы.

В 1927 году Вернер Гейзенберг показал, что неопределенность – неотъемлемая составляющая квантовой механики. Невозможно одновременно измерить разные характеристики частицы – положение и импульс. В квантовом мире материя может существовать в форме либо частицы, либо волны. Основные элементы не являются ни частицами, ни волнами, но проявляют свойства и тех, и других, что служит просто различными способами теоретического описания квантового мира.

Неопределенность обозначает конец достоверности. Если мы пытаемся точно измерить одно качество, мы лишаемся возможности измерить другое. Процесс измерения сводит на нет наше понимание системы.

Неопределенность отвергает научный детерминизм, подразумевая, что знание человека о мире всегда неполно, неточно и очень условно.

Неопределенность оспаривает причинную связь. Гейзенберг замечал: «Закон причинности утверждает, что, точно зная настоящее, можно предсказать будущее. Но вдумайтесь: в этой формулировке ложен не вывод, а предпосылка. Мы в принципе не можем знать все элементы, определяющие настоящее».

Неопределенность ставит под вопрос методологию. Эксперименты могут доказать только то, что они предположительно должны были доказать. Неопределенность – теория, основанная на практической несостоятельности экспериментов.

Неопределенность и квантовая механика противостоят судьбе, равно как и истине, и упорядоченности. Они предполагают вероятностный мир, в котором мы ничего не можем знать с определенностью, но только в качестве вероятности. Это устраняет представления Ньютона о времени и пространстве из существующей реальности. В квантовом мире механика понимается как возможность вне всякой причинной связи.

Альберт Эйнштейн отказался принять то, что положения в пространстве‑времени никогда не могут быть точно определены, а квантовые вероятности не связаны с какими‑либо причинами. Он отвергал не теорию в целом, а отсутствие причинно‑следственной связи. В знаменитом письме к Максу Борну он утверждал: «Во всяком случае, я убежден, что Он [Бог] не играет в кости». Но, как позднее отметил Стивен Хокинг (что оценил бы Гейзенберг), «Бог не только играет в кости… иногда он бросает их туда, где никто не сможет их увидеть».

Скрытная и неуловимая сила неопределенности оказывает свое метафорическое воздействие, проникая в различные области, такие как теория искусства, экономика и даже массовая культура. С одной стороны, принцип неопределенности Гейзенберга подразумевает, что измерение может иногда изменить то, что мы наблюдаем. С другой, намеренно или нет, Гейзенберг говорит о сущности системы в целом – отсутствии конечных истин и пределов нашего познания. Неопределенность связана с различными философскими концепциями. Сёрен Кьеркегор ввел различие между объективными и субъективными истинами. Объективные истины отбираются и изменяются посредством наших субъективных истин, напоминая взаимодействие между наблюдателем и событием, что составляет основу теории Гейзенберга.

Неопределенность существует и в лингвистике. В «Логико‑философском трактате» Людвиг Витгенштейн использует неопределенность, утверждая, что структура языка устанавливает границы мышления и того, что можно выразить словами.

Противоречивость неопределенности проявляет себя и другим образом, к примеру, полемикой относительно истории жизни самого Гейзенберга. В 1941 году Гейзенберг и его бывший учитель Нильс Бор встретились в оккупированной Дании. В пьесе Майкла Фрейна «Копенгаген» (1998) Маргарет, жена Бора, задает важный вопрос, который обсуждается по ходу действия: «Зачем он [Гейзенберг] приехал в Копенгаген?». Герои пьесы встречаются трижды, каждый раз с различным результатом. Гейзенберг говорит: «Никто не понимает причины моей поездки в Копенгаген. Раз за разом я ее объясняю. Самому Бору и Маргарет. Следователям и офицерам разведки, журналистам и историкам. Чем подробнее я объясняю, тем больше неопределенность».

В статье «Принципы квантовой механики», написанной в 1930 году, Поль Дирак противопоставляет ньютоновский и квантовый мир: «Становится все более очевидно… что природа работает по другому плану. Фундаментальные законы не управляют миром напрямую, как это выглядит в нашем представлении, вместо этого они контролируют основу, которую мы не можем себе вообразить, не создавая бессмыслицу».

Мир существовал до Гейзенберга и его принципа неопределенности. Мир существует и после. Они, эти миры, составляют один и тот же мир, но при этом различаются.

 


Дата добавления: 2019-09-13; просмотров: 167; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!