Детекция и уничтожение (деградация) белков. 2 страница



b) В метафазе спирализация хромосом достигает максимума. Отчетливо видна структура хромосом, их легко сосчитать и изучить их индивидуальные особенности. На этой стадии видно, что каждая хромосома состоит из двух хроматид, соединенных между собой только в области центромеры. Хромосомы располагаются в экваториальной плоскости клетки. Образуется экваториальная (метафазная) пластинка. Веретено деления уже полностью сформировано и состоит из нитей, соединяющих полюса с центромерами хромосом.

c) В анафазе вязкость цитоплазмы уменьшается, центромеры разъединяются и каждая хроматида становится самостоятельной хромосомой. Нити веретена, прикрепленные к центромерам, тянут хромосомы к полюсам клетки. Таким образом, в анафазе хроматиды, удвоенных еще в интерфазе хромосом, точно расходятся к полюсам клетки. В этот момент в клетке находятся два двойных набора хромосом. Число хромосом в соматических клетках всегда парное (диплоидное). Оно образуется после слияния двух половых клеток, в которых всегда бывает одинарное (гаплоидное) число хромосом. Каждый гаплоидный набор обозначается через п, а диплоидный —через 2п. Количество ДНК, соответствующее диплоидному набору хромосом, обозначается как 2с. Два диплоидных набора хромосом, образовавшиеся на стадии анафазы, обозначаются как 4и4с.

d) Телофаза — заключительная фаза митоза. Хромосомы деспирализуются, становятся плохо заметными, но не исчезают. На каждом полюсе клетки вокруг хромосом образуется ядерная оболочка из мембранных структур цитоплазмы. Воссоздаются ядрышки.

П: 2n4c; М: 2n4c; А: 2n2c – 4n4c; Т: 2n2c

      

На заключительном этапе клеточного деления происходит цитокинез — деление цитоплазматической части клетки. Этот процесс заканчивается образованием в экваториальной зоне клетки перетяжки, которая разделяет делящуюся клетку на две дочерние меньших размеров.

Регуляция клеточного цикла осуществляется окружающими клетками и гуморальными факторами. Существенную роль играют циклоны (особые белки, образующиеся под действием генетической программы), они индуцируют митоз, контролируют длительность его периодов. У животных обнаружены биологически активные вещества (кейлоны), которые показывают насколько они способны ингибировать деление клеток и синтез ДНК.

 

Амитоз – прямое деление ядра клетки, без формирования веретена деления. В норме он наблюдается в высокоспециализированных тканях, в клетках, которым уже не предстоит делиться: в эпителии и печени позвоночных, в зародышевых оболочках млекопитающих, в клетках эндосперма семени растений. Амитоз наблюдается также при необходимости быстрого восстановления тканей (после операций и травм). Амитозом также часто делятся клетки злокачественных опухолей.

 

Эндомитоз – процесс умножения числа хромосом в ядрах клеток без образования веретена деления и без деления клеток, в результате чего возникают ядра с увеличенным числом хромосом — полиплоидные ядра. Так возникают двухъядерные клетки (например, клетки печени у человека). В результате серии эндомитоза возникают гигантские полиплоидные клетки красного костного мозга – мегакариоциты. ∞n∞c

 

Политения – наличие в ядре некоторых соматических клеток гигантских многонитчатых (политенных) хромосом возникших в результате многократного удвоения ДНК без деления клетки.

Политенные хромосомы, так как содержат большое число копий генов, усиливают их экспрессию. Это, в свою очередь, увеличивает производство необходимых специализированной клетке белков. Обнаружена в слюнных железах ряда двукрылых. 2n∞c

 

20) Мейоз как процесс формирования гаплоидных клеток. Рекомбинация наследственного материала как резерв наследственной (генотипической) изменчивости и основа преадаптации. Генетический груз, его значение.

 

Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор хромосом. Его можно рассматривать как второй тип деления клеток. Мейоз также можно рассматривать и как специфичный вариант клеточной дифференцировки. Таким способом образуются половые клетки (гаметы) и споры.

Мейоз состоит из двух последовательных делений: редукционное деление (мейоз-1) и эквационное деление (мейоз-2). В каждом из них различают 4 фазы: профазу, метафазу, анафазу и телофазу. Таким образом, весь процесс мейоза условно можно разбить на 8 этапов, плавно переходящих один в другой. Мейоз начинается после S-периода, т. е. после репликации хромосом.

Профаза-1. Наиболее сложная, длительная и важная стадия мейоза. Помимо процессов, аналогичных процессам профазы митоза (спирализация хромосом, разрушение ядерной мембраны, исчезновение ядрышка, образование веретена деления), определяющее значение для всего последующего процесса имеет конъюгация гомологичных хромосом – синапсис. Соединенные пары гомологов называются бивалентами.

Гомологичные хромосомы связывает особая структура, образованная из белков кариоплазмы – синаптонемный комплекс (СК). В бивалентах гомологичные хромосомы могут обмениваться гомологичными участками. Такой процесс называется кроссинговером.

В связи с длительностью и многообразием процессов профазы-1 ее обычно подразделяют на 5 подстадий.

Лептотена – начало спирализации и уплотнения хромосом.

Зиготена – начало (с отдельных участков) и завершение синапсиса гомологичных хромосом. Происходит формирование СК.

Пахитена – укорочение и утолщение бивалентов (стадия толстых нитей).

Диплотена – гомологичные хромосомы бивалентов начинают расходиться (разрушается СК), но они связаны в нескольких зонах контакта – хиазмах. Число хиазм в биваленте может быть различным (обычно 2–3), в длинных хромосомах больше, чем в коротких. Хиазмы часто показывают, что между хроматидами происходит кроссинговер.

Диакинез – хромосомы достигают максимальной спирализации. Исчезают хиазмы, и к концу диакинеза хромосомы остаются связанными только в теломерных участках.

В конце профазы-1 центриоли расходятся к полюсам клетки.

Метафаза-1. Завершается формирование веретена деления. Биваленты концентрируются в экваториальной плоскости клетки.

Анафаза-1. Гомологичные хромосомы расходятся к полюсам клетки. Каждая хромосома состоит из двух хроматид, соединенных общей центромерой.

Телофаза-1. Обычно очень короткая. У полюсов клетки группируются гаплоидные наборы хромосом, в которых представлен только один из пары гомологов. Восстанавливаются структура ядра и ядерная мембрана. Происходит частичная деспирализация хромосом. В конце телофазы-1 наступает цитокинез и образуются две клетки с гаплоидным набором хромосом.

После телофазы-1 вновь образованные клетки сразу вступают в мейоз-2, который проходит по типу обычного митоза.

Профаза-2. Частично деспирализованные хромосомы хорошо различимы. Начинается процесс обратной спирализации хромосом. Разрушается ядерная мембрана, формируется веретено деления, центриоли начинают расходиться к полюсам клетки.

Метафаза-2. Хромосомы выстраиваются в экваториальной плоскости. Центромеры прикрепляются к микротрубочкам образованного веретена деления.

Анафаза-2. Происходит разделение центромер, и каждая хроматида становится самостоятельной хромосомой. Дочерние хромосомы направляются к полюсам клетки.

Телофаза-2. Формируются новые ядра с гаплоидным набором хромосом. Хромосомы деконденсируются. Наступает цитокинез.

В результате мейоза образуются из 1 клетки 4 дочерние - генетически разнородные с гаплоидным набором.

Важным следствием мейоза является обеспечение генетического разнообразия гамет в результате рекомбинации хромосом и кроссинговера. Мейоз создает возможность для возникновения в гаметах новых генных комбинаций, что ведет к изменениям в генотипе и фенотипе потомства.

Кроссинговер. Этот процесс происходит в профазе I мейоза в то время, когда гомологичные хромосомы тесно сближены в результате конъюгации и образуют биваленты. В ходе кроссинговера осуществляется обмен соответствующими участками между взаимно переплетающимися хроматидами гомологичных хромосом. Этот процесс обеспечивает перекомбинацию отцовских и материнских аллелей генов в каждой группе сцепления. В разных предшественниках гамет Кроссинговер происходит в различных участках хромосом, в результате чего образуется большое разнообразие сочетаний родительских аллелей в хромосомах.

Расхождение бивалентов в анафазе I мейоза. В метафазе I мейоза в экваториальной плоскости ахромативнового веретена выстраиваются биваленты, состоящие из одной отцовской и одной материнской хромосомы. Расхождение гомологов, которые несут разный набор аллелей генов в анафазе I мейоза, приводит к образованию гамет, отличающихся по аллельному составу отдельных групп сцепления

В связи с тем, что ориентация бивалентов по отношению к полюсам веретена в метафазе I оказывается случайной, в анафазе I мейоза в каждом отдельном случае к разным полюсам направляется гаплоидный набор хромосом, содержащий оригинальную комбинацию родительских групп сцепления. Разнообразие гамет, обусловленное независимым поведением бивалентов, тем больше, чем больше групп сцепления в геноме данного вида. Оно может быть выражено формулой 2n, где п — число хромосом в гаплоидном наборе. У человека п = 23, и разнообразие гамет, обусловленное этим механизмом, соответствует 223, или 8388608.

Кроссинговер и процесс расхождения бивалентов в анафазе I мейоза обеспечивают эффективную рекомбинацию аллелей и групп сцепления генов в гаметах, образуемых одним организмом.

Преадаптация - эволюционные признаки, которые первоначально не имели явной приспособительной ценности, но которые дают особи, популяции, виду или биоценозу возможность выжить в изменившихся условиях среды. Генетическим механизмом преадаптации является накопление в популяциях скрытого резерва наследственной изменчивости в ходе мутаций.

 

Генетический груз — накопление летальных и сублетальных «-» мутаций, вызывающих при переходе в гомозиготное состояние выраженное снижение жизнеспособности особей, или их гибель. Это не только совокупность «вредных» генов, но и материал для эволюции, генетическая адаптация.

 

21) Геномный уровень организации генетического аппарата, его специфический вклад в явления наследственности и биологической изменчивости.

 

Геном – вся совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза

Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни. На геномном уровне система сбалансированных по дозам и объединенных сложнейшими функциональными взаимосвязями генов представляет собой нечто большее, нежели простую совокупность отдельных единиц. Поэтому результатом функционирования генома является формирование фенотипа целостного организма. В связи с этим фенотип организма нельзя представлять как простую совокупность признаков и свойств, это организм во всем многообразии его характеристик на всем протяжении индивидуального развития.

В то же время допустимость рекомбинации единиц наследственности в генотипах особей обусловливает генетическое разнообразие их, что имеет важное эволюционное значение. Мутационные изменения, реализующиеся на геномном уровне организации наследственного материала — мутации регуляторных генов, обладающих широким плейотропным действием, количественные изменения доз генов, транслокации и транспозиции генетических единиц, влияющие на характер экспрессии генов, наконец, возможность включения в геном чужеродной информации при горизонтальном переносе нуклеотидных последовательностей между организмами разных видов, — оказываясь иногда эволюционно перспективными, вероятно, являются основной причиной ускорения темпов эволюционного процесса на отдельных этапах исторического развития живых форм на Земле. Таким образом, поддержание постоянства организации наследственного материала на геномном уровне имеет первостепенное значение для обеспечения нормального развития, организма и воспроизведения у особи в первую очередь видовых характеристик.

 

22) Геномные мутации. Геном и здоровье человека.

Геномные мутации – это изменения числа хромосом

1. Гаплоидия – уменьшение в кариотипе соматических клеток количества хромосом вдвое (2n → n);

2. Полиплоидия – увеличение (кратное n) в кариотипе соматических клеток количества хромосом;

   

· Аутоплоидия,

· Аллоплоидия;

3. Анэуплоидия (анэусомия) – не кратное гаплоидному (n) изменение в кариотипах соматических клеток количества отдельных хромосом:

· Нулисомия – отсутствие обоих гомологов (у людей нет);

· Моносомия – утрата одного из гомологов, у человека 45,х0 – синдром шерешевского-тернера, моносомий по аутосомам у людей нет;

· Полисомия – дополнительная(ые) половые хромосомы х или у (синдром клейнфельтера), а также аутосомы: трисомия полная по хромосоме 21 – синдром дауна;

· Частичная трисомия по критическому участку хромосомы 21 - q22.3 ( фермент супероксиддисмутаза) – синдром дауна в более мягкой форме; 

1. Нулисомия, моносомии по аутосомам у людей не совместимы с жизнью; описаны жизнеспособные организмы-мозаики;

2. Полисомии по половым хромосомам – гетерогенность симптоматики, возможны незначительные отклонения;

3. Поли(три)сомии по аутосомам: болезнь дауна -треть погибает внутриутробно, типичная симптоматика, нарушения со стороны системы иммунитета, снижена продолжительность жизни, смерть от инфекций; синдромы при трисомиях 13, 18 и др. – полулетальные мутации с разнообразной симптоматикой;

 

III. Организменный (онтогенетический) уровень организации биологических систем

1) Размножение организмов. Бесполое и половое размножение. Их сущность, биологическое и эволюционное значение.

Размножение — присущее всем живым организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни.

Различают два: бесполое и половое. В основе классификации форм размножения лежит тип деления клеток:

митотический (бесполое), мейотический (половое).

Бесполое размножение поддерживает и усиливает влияние стабилизирующей формы естественного отбора, способствует поддержанию наибольшей приспособленности к мало меняющимся условиям обитания. Происходит без образования гамет, с участием соматических клеток. Участвуют только один организм или его части. Клеточная основа митоз. От одной особи образуется идентичное потомство, клон. Достигается быстрое увеличение численности особей определённого вида. Способствует сохранению, уже имеющихся приспособлений (адаптаций). Является эволюционно более давним

Формы:  

1. бинарное деление

2. шизогония, или множественное деление

3. почкование - дочерние особи формируются из выростов тела материнского организма (почек).

4. спорогония - многократное деление ооцисты с образованием спорозоитов.

5. вегетативное размножение (пр.клубника)

6. почкование (гидра)

7. спорообразование (пр. папаротники)

8. фрагментация (пр. планария)

9. полиэмбриония (двойняшки)

Половое размножение способствует движущей форме естественного отбора. Обеспечивает генетическое разнообразие особей и высокий уровень фенотипической изменчивости потомства, чем обеспечивается эволюционная и экологическая пластичность живых существ. В основе лежит половой процесс, как объединение генетической информации между особями одного вида. Происходит с участие специализированных половых клеток, гамет имеющих гаплоидный набор хромосом. Требуется встреча двух особей разного пола. Клеточная основа это мейоз и оплодотворение. Формируется потомство с новыми комбинациями признаков. Расширяет приспособительные способности организма. Ведет к прогрессивной эволюции

Формы:

1)конъюгация - Специальные половые клетки (половые особи) не образуются. Конъюгация инфузорий заключается во временном соединении двух особей с целью обмена (рекомбинации) наследственным материалом.   2) гаметическая копуляция - Формируются половые элементы и происходит их попарное слияние. При копуляции, происходит объединении и рекомбинации наследственного материала.

Биологическая роль размножения: обеспечивает смену поколений; с его помощью сохраняется во времени биологические виды и жизнь как таковая; поддерживается внутривидовая изменчивость; решаются задачи увеличения числа особей.

 

2) Гаметогенез (сперматогенез, овогенез). Цитологическая и цитогенетическая характеристика. Гаметы. Морфология половых клеток, их биологическое значение.

Гаметогенез подразделяется на 3 стадии при овогенезе и 4 при сперматогенезе. ПЕРВЫЕ ТРИ СТАДИИ ПО МЕХАНИЗМУ ОБРАЗОВАНИЯ ОДИНАКОВЫ!

1 стадия — размножения (митоз). Диплоидные клетки, из которых образуются гаметы, называются: мужские — сперматогонии, а женские — овогонии. В результате последовательных МИТОЗОВ число клеток возрастает.

Сходства (пр. Человек) механизм образования — митоз, все клетки диплоидны, процесс начинается в эмбриональных гонадах.

Отличия:

1. по продолжительности: сперматогонии образуется на протяжении всего периода половой зрелости, овогонии — в период эмбриогенеза (max до 3 лет).

2. По числу клеток: сперматогенез — образуются миллиарды клеток, овогенез — тысячи.

2 стадия — роста (интерфаза). Происходит увеличение клеточных размеров и превращение сперматогоний и овогоний в сперматоциты и овоциты 1 порядка.

Сходства:

1. механизм удвоения ДНК в гаметоцитах при неизменном числе хромосом.

2. Называются гаметоциты 1 порядка.

Отличия: овоциты увеличиваются больше в размерах.

Стадия 3 — созревания (мейоз). Основные события — два последовательных деления: редукционное и эквационное. После первого деления образуются сперматоциты и овоциты 2 порядка (n2c). А после 2 деления: сперматиды и яйцеклетка (nc).

Сходства: механизм образования — мейоз.

Различия:

1. неравномерное распределние между клетками в овогенезе.

2.   каждый сперматоцит первого порядка дает 4 сперматида, тогда как каждый овоцит 1 порядка дает одну полноценную яйцеклетку и 3 редукционных тельца, которые в размножении не участвуют.

Роль редукционных телец:

1. выносят избыток генетической информации.

2. обеспечивают нормальный ход мейоза.

3. в яйцеклетке концентрируется максимальное количество желтка (питательного материала).

Стадия формирования — только в сперматогенезе. Сперматидам необходимо приобрести соответствующую форму для выполнения своей функции.

Гаметы обеспечивают передачу наследственной информации между поколениями особей. Это высокодифференцированные клетки, ядра которых содержат всю необходимую наследственную информацию для развития нового организма. По сравнению с соматическими клетками гаметы имеют ряд характерных особенностей. Первое отличие — наличие в ядре гаплоидного набора хромосом, что обеспечивает воспроизведение в зиготе типичного для организмов данного вида диплоидного набора. У яйцеклеток ЯЦО снижено за счет того, что имеется много цитоплазмы. В сперматозоидах, ЯЦО высокое. Третье отличие — низкий уровень обмена веществ в гаметах. Их состояние похоже на анабиоз. Мужские половые клетки вообще не вступают в митоз, а женские гаметы получают эту способность только после оплодотворения или воздействия фактора, индуцирующего партеногенез.


Дата добавления: 2019-09-13; просмотров: 172; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!