Получение из ангидридов кислот



Сложные эфиры карбоновых кислот, их производные.

Сложные эфиры предельных и непредельных одноосновных карбоновых кислот. Основные способы получения сложных эфиров, их использование, строение, номенклатура.

Физико-химические и пожароопасные свойства сложных эфиров; причины их повышенной пожарной опасности (по сравнению с изомерными карбоновыми кислотами).

Жиры и масла; гидрогенизация и окисление жиров. Пожарная опасность жиров и масел, их склонность к самовозгоранию.

Перекиси и гидроперекиси.

Сложные эфиры карбоновых кислот. Жиры

Ранее уже было указано, что сложные эфиры являются производными спиртов и кислот. Их можно рассматривать либо как продукт замещения гидроксильного водорода в спирте на радикал кислоты (ацил) R-C=O, либо как продукт замещения гидроксила в карбоксильной группе кислоты на остаток спирта – OR’:

R-C-OH HO-R’  R-C-OR’

II   +         ¾®     II

O к-та спирт    O сложный эфир

  

Номенклатура

Названия сложных эфиров обычно производят от наименований образующих их спирта и кислоты. Часто употребляют также названия, которые выводят из наименования углеводородного радикала спирта и корня латинского наименования кислоты (или, что тоже, корня названия радикала этой кислоты) с добавлением к последнему окончания – ат.

Например: Н—С—О—СН3  СН3—С—О—С2Н5  О=С—О—С2Н5

     II            II         I        

     O            O      O=C—OH          метиловый эфир му- этиловый эфир укс. неполный этиловый

равьиной к-ты; муравь-  к-ты; уксусноэти-  эфир щавелевой к-ты;

инометиловый эфир;  ловый эфир; этил-  моноэтилоксалат.

метилформиат.      ацетат.

Физические свойства

Сложные эфиры могут быть как жидкими, так и твердыми веществами в зависимости от молекулярного веса образующих их кислоты и спирта. Сложные эфиры низших и средних гомологов – летучие жидкости с характерным, часто приятным запахом. Многие из них являются носителями запаха различных плодов, овощей и фруктов. Сложные эфиры труднее растворимы в воде, чем образующие их спирты и кислоты. Так, этиловый спирт и уксусная кислота смешиваются с водой во всех отношениях, тогда как уксусноэтиловый эфир трудно растворим в воде. В органических растворителях сложные эфиры растворяются хорошо.

Химические свойства

Гидролиз (омыление) сложных эфиров

Под действием воды, особенно в кислой или щелочной среде, сложные эфиры разлагаются (гидролизуются) с образованием кислоты и спирта:  

 O                      O             

II                       II          

CH3—C—O—C2H5 + HOH ® CH3—C—OH + C2H5OH     

уксусноэтиловый эфир       уксусная к-та  этиловый спирт

Этим сложные эфиры отличаются от простых эфиров, которые, как уже известно, гидролизу не подвергаются. Однако гидролиз сложных эфиров идет медленно и гораздо менее энергично, чем гидролиз ангидридов.

Минеральные кислоты значительно увеличивают скорость гидролиза сложных эфиров: образуемые ими ионы водорода являются в этой реакции катализаторами. Еще быстрее сложные эфиры гидролизуютя под влиянием щелочей благодаря каталитическому действию гидроксильных ионов; кроме того, щелочи нейтрализуют образующуюся из эфира кислоту и тем самым способствуют течению реакции. Продуктами щелочного гидролиза сложных эфиров является спирт и соль кислоты:

 O      O

II                     II

 R—C—O—R’ + NaOH ¾® R—C—ONa + R’—OH

 сложный эфир   соль к-ты  спирт

Щелочной гидролиз сложных эфиров называют омылением. Скорость гидролиза эфиров возрастает также при нагревании и в случае применения избытка воды.

Способы получения сложных эфиров

Реакция этерификации

Сложные эфиры могут быть получены при непосредственном взаимодействии кислоты и спирта, например:

CH3—C—OH + HO—CH2—CH3 <=> CH3—C—O—CH2—CH3 + H2O

II укс. к-та                     II этиловый эфир  

 О                             О  уксусной кислоты

Как уже было указано, такую реакцию называют реакцией этерификации. Для органических кислот она протекает очень медленно, причем, скорость образования эфира зависит от строения исходных кислот и спирта. Скорость этерификации увеличивается при нагревании и, особенно, в присутствии минеральных кислот благодаря каталитическому действию ионов водорода. Особенно в качестве катализатора применяют серную кислоту (В.В. Марковников, 1873г.)

Реакция этерификации обратима. Это объясняется тем, что получаемый сложный эфир гидролизуется одновременно образующейся при реакции водой, и поэтому процесс идет в обратном направлении с разложением эфира на кислоту и спирт. При этом, чем больше накапливается воды, тем больше скорость обратной реакции, последняя ускоряется и при нагревании, а также под влиянием ионов водорода, вводимых для ускорения прямой реакции. Таким образом, реакция этерификации не доходит до конца, а лишь достигает состояния химического равновесия, применение же катализаторов и повышение температуры только ускоряет достижения равновесия. Соотношение всех реагирующих веществ в момент равновесия зависит от строения кислоты и спирта, а также от склонности сложного эфира к гидролизу.

Чтобы увеличить количество образующегося эфира, т.е. сместить равновесие реакции этерификации вправо одно из реагирующих веществ (то, которое доступнее) берут в избытке (в соответствии с законом действия масс). При избытке спирта в реакцию может вступить практически вся кислота, при избытке кислоты – весь спирт.

Другой способ увеличения выхода сложного эфира заключается в постоянном выведении из реакции одного из образующихся веществ – эфира или воды. Так, применяемая при этерификации в качестве катализатора серная кислота, кроме того, является веществом, связывающим воду, и таким образом способствует смещению равновесия вправо.

Получение из солей кислот

Сложные эфиры могут быть получены из солей кислот при действии на них галогенпроизводных. Например: (из ацетата серебра и хлористого этила)  

 O                          O

 II                           II

СН3—С—ОAg + Cl—CH2—CH3 ¾® CH3—C—O—CH2—CH3 + AgCl¯

                              этилацетат

Преимущество этого метода заключается в том, что реакция необратима и, таким образом, достигается хороший выход эфира. Однако применяемые исходные вещества дороже, чем свободные кислота и спирт, используемые в методе этерификации.

Получение из галогенангидридов кислот

Аналогичный предыдущему метод получения сложных эфиров заключается в действии спиртов или алкоголятов на галогенангидриды кислот. Например:     O                   O

СH3—CH2—ONa + Cl—C—CH3 ¾® CH3—CH2—O—C—CH3 + NaCl

этилат натрия  хлорангидрид  этилацетат

        укс. кислоты;

        хлористый ацетил.

Получение из ангидридов кислот

При действии спиртов на ангидриды кислот также достигаются хорошие выходы сложных эфиров:

   O                O             O

СH3—C                  II              II

  O + HO—CH3 ® CH3—C—O—CH3 + CH3—C—OH 

CH3—C  метиловый метилацетат   уксусная к-та

   O спирт

укс. ангидрид - (ацетангидрид)

Отдельные представители сложных эфиров

Уксусноэтиловый эфир (этилацетат) CH3COOC2H5.

Представляет собой бесцветную жидкость с характерным запахом. (Ткип. 77,2 оС, d420 =0,901). Довольно трудно растворим в воде. В технике широко используется как растворитель, особенно ВМС –пластмасс, входит в состав лаков и т.п. Применяется как исходное вещество в некоторых синтезах.

Уксусноизоамиловый эфир (изоамилацетат).

Его формула CH3COOCH2CH2CH(CH3)2. Бесцветная жидкость с запахом груш (Ткип. 142 оС, d415=0,8762) почти не растворим в воде. Применяется в качестве растворителя подобно этилацетату, а также как пахучее вещество в пищевой промышленности и в парфюмерии.

Сложные эфиры фруктовых эссенций

Приятным запахом фруктов, цветов и т.п. обладают и другие, получаемые путем синтеза, сложные эфиры. Например:

Эфир    формула      запах

Муравьиноэтиловый Н-СО-О-С2Н5  рома

(этилформиат)

муравьиноамиловый Н-СО-О-С5Н11  вишен

(амилформиат)

муравьиноизоамиловый Н-СО-О-С5Н11 слив

(изоамилформиат)

масляноэтиловый С3Н7-СО-О-С2Н5 абрикосов

(этилбутират)

масляноизоамиловый  С3Н7-СО-О-С5Н11      ананасов

(изоамилбутират)

изовалериановоизоамиловый С4Н9-СО-О-С5Н11  яблок

(изоамилизовалерат)

Многие из таких эфиров входят в состав искусственных фруктовых эссенций. Последние представляют собой часто очень сложные смеси различных как синтетических, так и натуральных веществ. Их применяют в кондитерском производстве, при изготовлении безалкогольных напитков, в парфюмерии. По одной из рецептур в состав абрикосовой эссенции входит 88, а яблочной – 20 различных компонентов. Рецептуры фруктовых эссенций для пищевых продуктов строго регламентируются государственными органами санитарного надзора. Пищевые эссенции должны быть совершенно безвредными.


Дата добавления: 2019-07-15; просмотров: 186; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!