Расчет эквивалентного уровня инфразвука



В случае непостоянного инфразвукового воздействия производят расчет эквивалентного общего (линейного) уровня звукового давления с учетом поправок на время его действия по табл. П.11.3, добавляемых к значениям измеренного уровня.


Приложение 12

(обязательное)

Гигиенические требования к микроклимату производственных помещений,
оборудованных системами лучистого обогрева

 

Общие положения

1.1. Настоящий документ содержит гигиенические требования к допустимым сочетаниям величин интенсивности теплового облучения работающих и температуры воздуха с другими параметрами микроклимата, а также особенности их контроля и оценки при использовании систем лучистого (низко, средне- и высокотемпературного) обогрева (СанПиН 2.2.4.548–96 гигиенические требования к микроклимату представлены для производственных помещений, оборудованных традиционными конвективными системами отопления и кондиционирования воздуха).

 

2. Гигиенические требования к микроклимату производственных помещений,
 оборудованных системами лучистого обогрева

2.1. Гигиенические требования к допустимым параметрам микроклимата произ­водственных помещений, оборудованных системами лучистого обогрева, примени­тельно к выполнению работ средней тяжести в течение 8-часовой рабочей смены, при­менительно к человеку одетому в комплект одежды с теплоизоляцией 1 кло (0,155 осм/Вт) представлены в табл. П.12.1

Таблица П.12.1

Температура воздуха, t, С Интенсивность теплового облу­чения, J1,Bt/m2 Интенсивность те­плового облуче­ния, J2, Вт/м2 Относительная влажность воздуха, Скорость дви­жения воздуха, V, м/с
11 60* 150 15—75 не более 0,4
12 60 125 15—75 не более 0,4
13 60 100 15—75 не более 0,4
14 45 75 15—75 не более 0,4
15 30 50 15—75 не более 0,4
16 15 25 15—75 не более 0,4

* При J > 60 следует использовать головной убор.

J1- Интенсивность теплового облучения теменной части головы на уровне 1,7 м от пола при работе стоя и 1,5 м - при работе сидя.

J2 - Интенсивность теплового облучения туловища на уровне 1,5 м от пола при работе стоя и 1 м -при работе сидя.

 

Требования к организации контроля и методам измерения микроклимата

3.1. Измерение параметров микроклимата в производственных помещениях, оборудованных системами лучистого обогрева, следует проводить в соответствии с требованиями раздела 7 СанПин 2.2.4.548—96 и примечаниями таблицы настоящего документа.

3.2. При измерении интенсивности теплового облучения головы работающих датчик измерительного прибора следует располагать в горизонтальной плоскости.

3.3. При измерении интенсивности теплового облучения туловища датчик изме­рительного прибора следует располагать в вертикальной плоскости.

3.4. При использовании систем лучистого обогрева производственных помеще­ний рабочие места должны быть удалены от наружных стен на расстояние не менее 2 м.

3.5. По результатам исследований составляется протокол, в котором должна быть оценка результатов выполненных измерений на соответствие нормативным тре­бованиям таблицы настоящего документа.


Приложение 13

 (справочное)

Климатические регионы (пояса) России

Климатический регион (пояс) и соответ­ствующие ему температура воздуха** и скорость ветра***

Регион России

Представительные города
1

2

3
Iа («особый») (-25 ˚С, 6,8 м/с)

Магаданская область (районы: Омсукчанский, Оль-ский, Северо-Эвенский, Среднеканский, Сусуман-ский, Тенькинский, Хасынский, Ягоднинский), Рес­публика Саха (Якутия) (Оймяконский район), терри­тория, расположенная севернее Полярного круга (кроме Мурманской области), Томская область (тер­ритории Александровского и Каргасокского районов, расположенных севернее 60° северной широты), Тю­менская область (районы Ханты-Мансийского и Ямало-Ненецкого автономных округов, расположен­ных севернее 60° северной широты), Чукотский ав­тономный округ

Норильск, Тикси, Диксон
1б (IV) (-41 ˚С, 1,3 м/с)

Архангельская область (кроме районов, расположен­ных за Полярным кругом), Иркутская область (рай­оны: Бодайбинский, Катангский, Киренский, Мам-ско-Чуйский), Камчатская область, Республика Каре­лия (севернее 63° северной широты), Республика Коми (районы, расположенные южнее Полярного круга), Красноярский край (территории Эвенского автономного округа и Туруханского района, распо­ложенного южнее Полярного круга), Курильские острова, Магаданская область (кроме Чукотского ав­тономного округа и районов, перечисленных ниже), Мурманская область, Республика Саха (Якутия) (кроме Оймяконского района и районов, располо­женных севернее Полярного круга), Сахалинская об­ласть (районы: Ногликский, Охтинский), Томская область (районы: Бакчарский, Верхнекетский, Кри-вошеинский, Молчановский, Парабельский, Чаин-ский и территории Александровского и Каргасокско­го районов, расположенных южнее 60° северной широты), Тюменская область (районы Ханты-Мансийского и Ямало-Ненецкого автономных окру­гов, кроме районов, расположенных севернее 60° се­верной широты), Хабаровский край (районы: Аяно-Майский, Николаевский, Охотский, им. Полины Осипенко, Тугуро-Чумиканский, Ульчский

Якутск, Оймякон, Верхоянск, Туру-ханск, Уренгой, Надым, Салехард, Магадан, Олек-минск

II (III)

(-18,0 °С,

3,6 м/с)

Республика Алтай, Амурская область, Республика Башкортостан, Республика Бурятия, Вологодская об­ласть, Иркутская область (кроме районов, перечис­ленных ниже), Республика Карелия, Кемеровская область, Кировская область, Костромская область, Красноярский край (кроме районов, перечисленных ниже), Курганская область, Новосибирская область, Омская область, Оренбургская область, Пермская область, Сахалинская область (кроме районов, пере­численных ниже), Свердловская область, Республика Татарстан, Томская область (кроме районов, пере­численных ниже), Республика Тыва, Тюменская об­ласть (кроме районов, перечисленных ниже), Уд­муртская Республика, Хабаровский край (кроме рай­онов, перечисленных ниже), Челябинская область, Читинская область

Новосибирск, Омск, Томск, Сык­тывкар, Челябинск, Чита, Тюмень, Сургут, Тобольск, Иркутск, Хаба­ровск, Пермь, Оренбург

III (II) (-9,7 ˚С, 5,6 м/с)

Астраханская область, Белгородская область, Брян­ская область, Владимирская область, Волгоградская область, Воронежская область, Ивановская область, Калужская область, Курская область, Ленинградская область, Липецкая область, Республика Марий Эл, Республика Мордовия, Республика Калмыкия, Мос­ковская область, Нижегородская область, Новгород­ская область, Орловская область, Ростовская область

Астрахань, Архан­гельск, Белгород, Санкт-Петербург Москва, Саратов, Мурманск, Н. Новгород, Тверь, Смоленск, Тамбов, Казань, Волгоград, Самара, Ростов-на-Дону

IV (I)

(-1,0 ˚С 2,7 м/с)

Калининградская область, Ставропольский край, Краснодарский край, Республики Дагестан, Кабарди­но-Балкарская, Чеченская Республика, Республики Ингушетия, Северная Осетия

Ставрополь, Крас­нодар, Новорос­сийск, Сочи, Кали­нинград, Майкоп, Туапсе, Нальчик, Махачкала, Влади­кавказ

* Приведено районирование по поясам, разработанное в целях бесплатной выдачи работнику теплой спецодежды и теплой спецобуви (постановление Министерства труда и социального развития РФ от 31.12.97 № 70). При несоответствии метеорологических условий в том или ином регионе России при­веденным в первой графе величинам, следует определять принадлежность климатического региона в соответствии со средними значениями температуры воздуха и наиболее вероятными величинами ско­рости ветра в данной местности;

** средняя температура воздуха зимних месяцев;

*** средняя скорость ветра из наиболее вероятных величин в зимние месяцы.

         

 


Приложение 14

(обязательное)

Гигиенические критерии оценки
 и классификация условий труда при работах с источниками
 ионизирующего излучения[‡]

1. Общие положения

1.1. Настоящие «Гигиенические критерии оценки и классификация условий тру­да при работах с источниками ионизирующего излучения» (далее - гигиенические кри­терии) предназначены для гигиенической оценки условий труда работников, подвер­гающихся облучению от источников ионизирующего излучения в процессе трудовой деятельности.

1.2. Гигиенические критерии оценки ионизирующего фактора имеют принципи­альное отличие от оценки других факторов рабочей среды, что обусловлено специфи­ческими особенностями его воздействия на организм человека, сложившейся практи­кой оценки ионизирующего излучения и необходимостью обеспечения радиационной безопасности в соответствии с законом Российской Федерации «О радиационной безо­пасности населения» № 3-ФЗ от 09.01.96.

1.3. Критерии оценки условий труда с источниками ионизирующих излучений не учитывают фактическое время пребывания работника на рабочем месте. При этом, условия труда оценивают из расчета работы в стандартных условиях, установленных п. 8.2 НРБ-99. Данные критерии определены с использованием соотношений, принятых НРБ-99 на основании международных моделей дозоформирования.

1.4. Гигиенические критерии основываются на Нормах радиационной безопасности НБР-99 и характеризуют только потенциальную опасность работы в конкретных условиях при неукоснительном соблюдении федеральных норм и правил по контролю реального облучения человека в процессе труда и не влекут каких-либо изменений к требованиям НРБ-99 по ограничению реального облучения установленными пределами доз.

1.5. Проведение работ во вредных и опасных условиях труда, в соответствии со ст. 11 Федерального закона Российской Федерации «О санитарно-эпидемиологическом благополучии населения» № 52-ФЗ от 30.03.99, должно обеспечивать безопасность для здоровья человека посредством выполнения комплекса защитных, технических, орга­низационных и санитарно-гигиенических мероприятий.

2. Принципы классификации условий труда при воздействии
 ионизирующего излучения

2.1. При обращении с открытыми и закрытыми источниками ионизирующего излучения персонал (работники) подвергается воздействию факторов, которые могут оказывать неблагоприятное воздействие в ближайшем или отдаленном периоде на со­стояние здоровья работников и их потомство, если уровень этого воздействия приводит к увеличению риска повреждения здоровья. Такие условия труда регламентируются как вредные.

2.2. Ионизирующая радиация при воздействии на организм человека может вы­зывать два вида неблагоприятных эффектов, которые клинической медициной относят к болезням: детерминированные (лучевая болезнь, лучевой дерматит, лучевая катарак­та, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятност­ные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные бо­лезни).

2.3. В отношении детерминированных эффектов излучения Нормами радиаци­онной безопасности - НРБ-99 предполагается существование порога, ниже которого эффект отсутствует, а выше - тяжесть эффекта зависит от дозы.

Вероятность возникновения стохастических беспороговых эффектов пропор­циональна дозе, а тяжесть их проявления не зависит от дозы. Латентный период воз­никновения этих эффектов у облученного человека составляет от 2—5 до 30—50 лет и более.

2.4. НРБ-99 устанавливают для персонала основные пределы доз (ПД) как по
эффективной, так и по эквивалентным дозам в хрусталике глаза, коже, кистях и стопах, отмечая, что соблюдение ПД предотвращает возникновение детерминированных эффектов, а вероятность стохастических эффектов (индивидуальный и коллективный по­жизненный риск возникновения стохастических эффектов) сохраняется при этом на
приемлемом уровне.

2.5. Согласно НРБ-99, для обеспечения радиационной безопасности при нор­мальной эксплуатации источников излучения необходимо руководствоваться, наряду с принципами нормирования и обоснования, принципом оптимизации - поддержанием на возможно низком и достижимом уровне с учетом экономических и социальных фак­торов индивидуальных доз облучения и числа облучаемых лиц при использовании лю­бого источника излучения. По НРБ-99 необходимо постепенное, по мере возможности, снижение индивидуальных доз облучения до 10 мкЗв/год - величины, соответствую­щей пожизненному индивидуальному риску в результате облучения в течение года 10-6, который оценивается как пренебрежимый или безусловно приемлемый.

2.6. Вышеизложенное (п.п. 2.1—2.5) определяет особенности гигиенических критериев оценки и классификации условий труда при работе с источниками ионизи­рующих излучений:

- степень вредности условий труда определяется не выраженностью прояв­ления у работающих пороговых детерминированных эффектов, а увеличением рис­ка возникновения стохастических беспороговых эффектов;

- условия труда характеризуются как вредные даже при соблюдении гигие­нических нормативов (ПД по НРБ-99), за исключением перечисленных в п. 2.8 на­стоящего приложения.

2.7. Для гигиенической оценки и классификации условий труда при работе с ис­точниками излучения используются значения максимальной потенциальной эффектив­ной и/или эквивалентной дозы (табл. П.14.1).

2.8. К допустимым (2 класс) относятся условия труда при обращении с техно­генными и природными источниками излучения на производстве, при которых макси­мальная потенциальная эффективная доза не превысит 5 мЗв/год, а максимальная экви­валентная доза в хрусталике глаза, коже, кистях и стопах не превысит 37,5, 125 и 125 мЗв/год, соответственно. При этом гарантируется отсутствие детерминированных эффектов, а риск стохастических эффектов не превышает средних значений риска для условий труда на производствах, не относящихся к вредным или опасным.

Условия труда относятся к допустимым в случаях, когда максимальная потен­циальная эффективная доза численно соответствует:

- допустимой среднегодовой дозе техногенного облучения персонала груп­пы Б, т. е. допускается облучение работоспособной части взрослого населения, не проходящего специального входного медицинского обследования, дозой 5 мЗ/год;

- нормируемой НРБ-99 дозе облучения от природных источников в произ­водственных условиях, т. е. в данных условиях допускается облучение работоспо­собной части взрослого населения, не проходящего специального входного меди­цинского обследования, дозой 5 мЗв/год;

- пределу годовой дозы для населения, т. е. в отдельно взятый год допуска­ется облучение населения (включая детей) дозой 5 мЗв/год.

2.9. Условия труда с источниками ионизирующего излучения, независимо от их
происхождения, при которых максимальная потенциальная эффективная доза может
превысить 5 мЗв/год, а максимальная эквивалентная доза в хрусталике глаза, коже, кис­
тях и стопах - 37,5, 125 и 125 мЗв/год, соответственно, относятся к вредным (3 класс).

2.10. К опасным (экстремальным) условиям труда (4 класс) относятся условия труда при работе с источниками, при которых максимальная потенциальная эффек­тивная доза может превысить 100 мЗв/год.

2.11. Превышение индивидуальных доз в условиях нормальной эксплуатации радиационных объектов выше установленных НРБ-99 основных пределов доз для пер­сонала не допускается. Работа с источниками излучения в условиях, когда прогнози­руемые значения максимальных потенциальных индивидуальных эффективных и/или эквивалентных доз при облучении в течение года в стандартных условиях (п. 8.2 НРБ-99) могут превысить значения основных пределов доз (классы условий труда 3.4 и 4, табл. П. 14.1 и П.14.2), допускается только при проведении необходимых дополнитель­ных защитных мероприятий (защита временем, расстоянием, экранированием, приме­нением СИЗ и т. п.), гарантирующих непревышение установленных пределов доз, или при планируемом повышенном облучении.

2.12. Определенная методами индивидуального дозиметрического контроля ре­альная годовая доза облучения (эффективная и/или эквивалентная) работника на кон­кретном рабочем месте не может изменить класс или степень вредности условий труда данного рабочего места. Случаи, когда реальная годовая доза облучения оказывается выше максимальной потенциальной дозы для данного рабочего места, должны анали­зироваться.

2.13. Воздействие на организм работников вредных или опасных нерадиацион­ных факторов, способных увеличить риск возникновения детерминированных и сто­хастических эффектов, должно учитываться дополнительно (раздел 5.11 руководства).

3. Гигиеническая оценка и классификация условий труда

3.1. Для гигиенической классификации условий труда при работе с источниками ионизирующего излучения используются значения максимальной потенциальной эф­фективной и/или эквивалентной дозы. Классы условий труда в зависимости от их ха­рактеристик представлены в табл. П. 14.1.

3.2. В качестве основных гигиенических критериев для оценки условий труда при работе с источниками ионизирующего излучения приняты:

- мощность максимальной потенциальной эффективной дозы;

- мощность максимальной потенциальной эквивалентной дозы в хрусталике
глаза, коже, кистях и стопах.

Классы условий труда и степени вредности в зависимости от мощности потен­циальной дозы представлены в табл. П.14.2.

3.3. Оценка условий труда при работе с источниками ионизирующего излучения осуществляется на основе систематических данных оперативного радиационного кон­троля на рабочих местах работников по специальным методическим указаниям.


 

 

Таблица П. 14.1

Значения потенциальной максимальной дозы
 при работе с источниками излучения в стандартных условиях, мЗв/год

Потенциальная максимальная годовая доза

 

Класс условий труда

Допустимый - 2

Вредный - 3

Опасный - 4*)

3.1 3.2 З.З*) 3.4*)
Эффективная ≤5 >5—10 >10—20 >20—50 > 50—100 >100
Эквивалентная в хрусталике глаза ≤40 >37,5—75 > 75—150 >150—187,5 > 187,5—300 >300
Эквивалентная в коже, кистях и стопах ≤125 > 125—250 > 250—500 >500—750 >750—1000 > 1000

*) Работа с источниками излучения в условиях, когда максимальные потенциальные индивидуальные эффективные и/или эквивалентные дозы при облучении в течение года в стандартных условиях (п. 8.2 НРБ-99) могут превысить основные пределы доз, допускается только при проведении необходимых дополнительных защитных мероприятий (зашита временем, расстоянием, экранированием, примене­нием СИЗ и т. п.), гарантирующих не превышение установленных пределов доз, или при планируемом повышенном облучении.

 

Таблица П. 14.2

Мощность потенциальной дозы для оценки классов и степеней
 условий труда (в единицах ДМПД)

 

Мощность по­тенциальной

дозы

 

Класс условий труда

Допустимый - 2

Вредный — 3

Опасный - 4

1 степени - 3.1 2 степени - 3.2 3 степени - 3.3 4 степени - 3.4
Эффективная < 1 > 1—2 >2—4 >4—10 > 10—20 >20
Эквивалентная в хрусталике глаза ≤ 1 >1— 2 >2—4 >4—5 >5—8 >8
Эквивалентная в коже, кистях и стопах ≤ 1 >1— 2 >2^t >4—5 >5—8 >8

111


 

3.4. Мощность потенциальной дозы излучения (МПД) для персонала определя­ется по формуле (1) для эффективной дозы и (или) по формуле (2) - для эквивалентной дозы.

При расчете мощности максимальной потенциальной дозы продолжительность рабочего времени для персонала группы А принимается равной 1 700 ч в год, для всех остальных работников - 2 000 ч в год и, соответственно, в формулах (1) и (2) использу­ется коэффициент 2,0 вместо 1,7.

3.5. В табл. П.14.2 значения среднегодовой мощности потенциальной дозы при­ведены в единицах допустимой мощности годовой потенциальной дозы (ДМПД), т. е. в относительных единицах. Допустимая мощность годовой потенциальной дозы -ДМПД определяется как отношение максимальной допустимой потенциальной эффективной (эквивалентной) дозы к стандартной продолжительности работы в течение года, кото­рая принимается:

- для персонала группы А - 1 700 ч/год;

- для персонала группы Б - 2 000 ч/год;

- для работников, не относящихся к группам А и Б, в случае природного об­лучения в производственных условиях - 2 000 ч/год.

В табл. П.14.3 приводятся значения среднегодовой мощности потенциальной дозы как в единицах ДМПД, так и в мЗв/ч (мкЗв/ч).

Результаты значений МПД, рассчитанные по формулам (1) и (2) и представлен­ные в единицах ДМПД, сопоставляются с данными табл. П.14.2.


 

Таблица П.14.3

 Значения мощности потенциальной дозы

 

 

 

 

 

 

 

 

 

 

 

 

При оценке условий труда персонала группы А

1 2 3

Для эффективной МПД

1ДМПД 5 мЗв /1 700 ч = 0,003 мЗв/ч (3,0 мкЗв/ч);
2ДМПД 10 мЗв /1 700 ч = 0,006 мЗв/ч (6,0 мкЗв/ч);
4ДМПД 20 мЗв /1 700 ч = 0,012 мЗв/ч (12,0 мкЗв/ч);
10ДМПД 50 мЗв /1 700 ч = 0,03 мЗв/ч (30,0 мкЗв/ч);
20ДМПД 100 мЗв /1 700 ч = 0,06 мЗв/ч (60,0 мкЗв/ч).

Для эквивалентной МПД облучения хрусталика глаза

1ДМПД 37,5 мЗв /1 700 ч = 0,022 мЗв/ч (22,0 мкЗв/ч)
2ДМПД 75 мЗв /1 700 ч = 0,044 мЗв/ч (44,0 мкЗв/ч)
4ДМПД 150 мЗв /1 700 ч = 0,088 мЗв/ч (88,0 мкЗв/ч)
5ДМПД 187,5 мЗв/ 1 700ч = 0,11 мЗв/ч (110,0мкЗв/ч)
8ДМПД 300 мЗв/1 700 ч = 0,176мЗв/ч (176,0 мкЗв/ч).

Для эквивалентной МПД облучения кожи, кистей и стоп

1ДМПД 125 мЗв /1 700 ч = 0,075 мЗв/ч (75,0 мкЗв/ч);
2ДМПД 250 мЗв /1 700 ч = 0,15 мЗв/ч (150,0 мкЗв/ч);
4ДМПД 500 мЗв /1 700 ч = 0,3 мЗв/ч (300,0 мкЗв/ч);
5ДМПД 750 мЗв / 1 700 ч = 0,44 мЗв/ч (440,0 мкЗв/ч);
8ДМПД 1000 мЗв / 1 700 ч = 0,6 мЗв/ч (600,0 мкЗв/ч).

При оценке условий труда рабочих мест персонала группы Б и работников в случае природ­ного облучения в производственных условиях

Значения мощности потенциальной дозы определяются так же, как и для персонала группы А, но при условии стандартной продолжительности работы в течение года 2 000 ч

 


4. Термины и определения, используемые при гигиенической оценке
 ионизирующего излучения

Доза максимальная потенциальная - максимальная индивидуальная эффектив­ная (эквивалентная) доза облучения, которая может быть получена за календарный год при работе с источниками ионизирующих излучений в стандартных условиях на кон­кретном рабочем месте, Зв/год.

Доза эффективная (эквивалентная) годовая - сумма эффективной (эквивалент­ной) дозы внешнего облучения, полученной за календарный год, и ожидаемой эффек­тивной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год (п. 18 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Единица годовой эффективной дозы - зиверт (Зв).

Источник ионизирующего излучения - радиоактивное вещество или устройство, испускающее или способное испускать ионизирующее излучение, на которое распро­страняется действие НРБ-99 и ОСПОРБ-99 (п. 27 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Источник излучения техногенный - источник ионизирующего излучения специ­ально созданный для его полезного применения или являющийся побочным продуктом этой деятельности (п. 29 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Источник радионуклидный закрытый - источник излучения, устройство которо­го исключает поступление содержащихся в нем радионуклидов в окружающую среду в условиях применения и износа, на которые он рассчитан (п. 30 раздела «Термины и оп­ределения» НРБ-99 и ОСПОРБ-99).

Источник радионуклидный открытый - источник излучения, при использова­нии которого возможно поступление содержащихся в нем радионуклидов в окружаю­щую среду (п. 31 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Место рабочее - место постоянного или временного пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излу­чения в течение более половины рабочего времени или двух часов непрерывно (п. 37 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Место рабочее временное - место (или помещение) пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излу­чения в течение менее половины рабочего времени или менее двух часов непрерывно.

Место рабочее постоянное - место (или помещение) пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излу­чения в течение не менее половины рабочего времени или двух часов непрерывно. Если обслуживание процессов производства осуществляется в различных участках помеще­ния, то постоянным рабочим местом считается все помещение.

Мощность дозы - доза излучения за единицу времени (секунду, минуту, час) (п. 38 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Мощность потенциальной дозы излучения - максимальная потенциальная эф­фективная (эквивалентная) доза излучения при стандартной продолжительности рабо­ты в течение года. (В рамках данного документа).

Облучение производственное - облучение работников от всех техногенных и природных источников ионизирующего излучения в процессе производственной дея­тельности (п. 45 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Объект радиационный - организация, где осуществляется обращение с техно­генными источниками ионизирующего излучения (п. 49 раздела «Термины и определе­ния» НРБ-99 и ОСПОРБ-99).

Персонал - лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б) (п. 55 раз­дела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Радиационная авария - потеря управления источником ионизирующего излуче­ния, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которая могла привести или привела к облучению людей выше установленных норм или радиоактивному за­грязнению окружающей среды (п. 58 раздела «Термины и определения» НРБ-99 и ОС­ПОРБ-99).

Работа с источником ионизирующего излучения - все виды обращения с источ­ником излучения на рабочем месте, включая радиационный контроль (п. 60 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Работа с радиоактивными веществами - все виды обращения с радиоактивны­ми веществами на рабочем месте, включая радиационный контроль (п. 61 раздела «Тер­мины и определения» НРБ-99 и ОСПОРБ-99).

Риск радиационный - вероятность возникновения у человека или его потомства какого-либо вредного эффекта в результате облучения (п. 62 раздела «Термины и опре­деления» НРБ-99 и ОСПОРБ-99).

Эквивалент дозы амбиентный (амбиентная доза) H ( d ) - эквивалент дозы, кото­рый был создан в шаровом фантоме МКРЕ на глубине d (мм) от поверхности по диа­метру, параллельному направлению излучения, в поле излучения, идентичном рассмат­риваемому по составу, флюенсу и энергетическому распределению, но мононаправлен­ном и однородном. Эквивалент амбиентной дозы используется для характеристики по­ля излучения в точке, совпадающей с центром шарового фантома.

Словарь основных терминов: учебное пособие, под ред. В. А. Кутькова.

Эффекты излучения детерминированные - клинически выявляемые вредные биологические эффекты, вызванные ионизирующим излучением, в отношении которых предполагается существование порога, ниже которого эффект отсутствует, а выше-тяжесть эффекта зависит от дозы (п. 70 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).

Эффекты излучения стохастические - вредные биологические эффекты, вы­званные ионизирующим излучением, не имеющие дозового порога возникновения, ве­роятность возникновения которых пропорциональна дозе и для которых тяжесть про­явления не зависит от дозы (п. 71 раздела «Термины и определения» НРБ-99 и ОСПОРБ-99).


Приложение 15

(обязательное)

Методика
 оценки тяжести трудового процесса

Тяжесть трудового процесса оценивают по ряду показателей, выраженных в эр-гометрических величинах, характеризующих трудовой процесс, независимо от индиви­дуальных особенностей человека, участвующего в этом процессе. Основными показа­телями тяжести трудового процесса являются:

- физическая динамическая нагрузка;

- масса поднимаемого и перемещаемого груза вручную;

- стереотипные рабочие движения;

- статическая нагрузка;

- рабочая поза;

- наклоны корпуса;

- перемещение в пространстве.

Каждый из перечисленных показателей может быть количественно измерен и оценен в соответствии с методикой, разделом 5.10 и табл. 17 настоящего руководства.

При выполнении работ, связанных с неравномерными физическими нагрузками в разные смены, оценку показателей тяжести трудового процесса (за исключением мас­сы поднимаемого и перемещаемого груза и наклонов корпуса), следует проводить по средним показателям за 2—3 смены. Массу поднимаемого и перемещаемого вручную груза и наклоны корпуса следует оценивать по максимальным значениям.

1. Физическая динамическая нагрузка (выражается в единицах внешней механической работы за смену -кг∙м)

Для подсчета физической динамической нагрузки (внешней механической работы) определяется масса груза (деталей, изделий, инструментов и т. д.), перемещаемого вруч­ную в каждой операции и путь его перемещения в метрах. Подсчитывается общее количе­ство операций по переносу груза за смену и суммируется величина внешней механической работы (кг х м) за смену в целом. По величине внешней механической работы за смену, в зависимости от вида нагрузки (региональная или общая) и расстояния перемещения груза, определяют, к какому классу условий труда относится данная работа.

Пример 1. Рабочий (мужчина) поворачивается, берет с конвейера деталь (масса 2,5 кг), перемещает ее на свой рабочий стол (расстояние 0,8 м), выполняет необходи­мые операции, перемещает деталь обратно на конвейер и берет следующую. Всего за смену рабочий обрабатывает 1 200 деталей. Для расчета внешней механической работы вес деталей умножаем на расстояние перемещения и еще на 2, так как каждую деталь рабочий перемещает дважды (на стол и обратно), а затем на количество деталей за сме­ну. Итого: 2,5 кг х 0,8 м х 2 х 1 200 = 4 800 кгм. Работа региональная, расстояние пере­мещения груза до 1 м, следовательно, по показателю 1.1 работа относится ко 2 классу.

При работах, обусловленных как региональными, так и общими физическими нагрузками в течение смены, и совместимых с перемещением груза на различные рас­стояния, определяют суммарную механическую работу за смену, которую сопоставля­ют со шкалой соответственно среднему расстоянию перемещения (табл. 17 руково­дства).

Пример 2. Рабочий (мужчина), переносит ящик с деталями (в ящике 8 деталей по 2,5 кг каждая, вес самого ящика 1 кг) со стеллажа на стол (6 м), затем берет детали по

одной (масса 2,5 кг), перемещает ее на станок (расстояние 0,8 м), выполняет необходи­мые операции, перемещает деталь обратно на стол и берет следующую. Когда все дета­ли в ящике обработаны, работник относит ящик на стеллаж и приносит следующий ящик. Всего за смену он обрабатывает 600 деталей.

Для расчета внешней механической работы, при перемещении деталей на рас­стояние 0,8 м, вес деталей умножаем на расстояние перемещения и еще на 2, так как каждую деталь рабочий перемещает дважды (на стол и обратно), а затем на количество деталей за смену (0,8м х 2 х 600 = 960 м). Итого: 2,5 кг х 960 м = 2 400 кгм. Для расчета внешней механической работы при перемещении ящиков с деталями (21 кг) на рас­стояние 6 м вес ящика с умножаем на 2 (так как каждый ящик переносили 2 раза), на количество ящиков (75) и на расстояние 6 м. Итого: 2 х 6 м х 75= 900 м. Далее 21 кг ум­ножаем на 900 м и получаем 18 900 кгм. Итого за смену суммарная внешняя механиче­ская работа составила 21 300 кгм. Общее расстояние перемещения составляет 1 860 м (900 м + 960 м). Для определения среднего расстояния перемещения 1 800 м : 1 350 раз и получаем 1,37 м. Следовательно, полученную внешнюю механическую работу следу­ет сопоставлять с показателем перемещения от 1 до 5 м. В данном примере внешняя механическая работа относится ко 2 классу.

2. Масса поднимаемого и перемещаемого груза вручную (кг)

Для определения массы груза (поднимаемого или переносимого работником на протяжении смены, постоянно или при чередовании с другой работой) его взвешивают на товарных весах. Регистрируется только максимальная величина. Массу груза можно также определить по документам.

Пример 1. Рассмотрим предыдущий пример 2 пункта 1. Масса поднимаемого груза - 21 кг, груз поднимали 150 раз за смену, т. е. это часто поднимаемый груз (более 16 раз за смену) (75 ящиков, каждый поднимался 2 раза), следовательно, по этому пока­зателю работу следует отнести к классу 3.2

Для определения суммарной массы груза, перемещаемого в течение каждого ча­са смены, вес всех грузов за смену суммируется. Независимо от фактической длитель­ности смены, суммарную массу груза за смену делят на 8, исходя из 8-часовой рабочей смены.

В случаях, когда перемещения груза вручную происходят как с рабочей поверх­ности, так и с пола, показатели следует суммировать. Если с рабочей поверхности пе­ремещался больший груз, чем с пола, то полученную величину следует сопоставлять именно с этим показателем, а если наибольшее перемещение производилось с пола - то с показателем суммарной массы груза в час при перемещении с пола. Если с рабочей поверхности и с пола перемещается равный груз, то суммарную массу груза сопостав­ляют с показателем перемещения с пола (пример 2 и 3).

Пример 2. Рассмотрим пример 1 пункта 1. Масса груза 2,5 кг, следовательно, в соответствии с табл. 17 руководства (п. 2.2) тяжесть труда по данному показателю от­носится к 1 классу. За смену рабочий поднимает 1 200 деталей, по 2 раза каждую. В час он перемещает 150 деталей (1 200 деталей : 8 часов). Каждую деталь рабочий берет в руки 2 раза, следовательно, суммарная масса груза, перемещаемая в течение каждого часа смены составляет 750 кг (150 х 2,5 кг х 2). Груз перемещается с рабочей поверхно­сти, поэтому эту работу по п. 2.3 можно отнести ко 2 классу.

Пример 3. Рассмотрим пример 2 пункта 1. При перемещении деталей со стола на станок и обратно масса груза 2,5 кг, умножается на 600 и на 2, получаем 3 000 кг за смену. При переносе ящиков с деталями вес каждого ящика умножается на число ящи­ков (75) и на 2, получаем 3 150 кг за смену. Общий вес за смену = 6 150 кг, следова-

тельно, в час - 769 кг. Ящики рабочий брал со стеллажа. Половина ящиков стояла на нижней полке (высота над полом 10 см), половина - на высоте рабочего стола. Следо­вательно, больший груз перемещался с рабочей поверхности и именно с этим показате­лем надо сопоставлять полученную величину. По показателю суммарной массы груза в час работу можно отнести к 2 классу.

3. Стереотипные рабочие движения (количество за смену, суммарно на две руки)

Понятие «рабочее движение» в данном случае подразумевает движение элемен­тарное, т. е. однократное перемещение рук (или руки) из одного положения в другое. Стереотипные рабочие движения в зависимости от амплитуды движений и участвую­щей в выполнении движения мышечной массы делятся на локальные и региональные. Работы, для которых характерны локальные движения, как правило, выполняются в быстром темпе (60—250 движений в минуту) и за смену количество движений может достигать нескольких десятков тысяч. Поскольку при этих работах темп, т. е. количест­во движений в единицу времени, практически не меняется, то, подсчитав, с применени­ем какого-либо автоматического счетчика, число движений за 10—15 мин, рассчитыва­ем число движений в 1 мин, а затем умножаем на число минут, в течение которых вы­полняется эта работа. Время выполнения работы определяем путем хронометражных наблюдений или по фотографии рабочего дня. Число движений можно определить так­же по числу знаков, напечатанных (вводимых) за смену (подсчитываем число знаков на одной странице и умножаем на число страниц, напечатанных за день).

Пример 1. Оператор ввода данных в персональный компьютер печатает за смену 20 листов. Количество знаков на 1 листе - 2 720. Общее число вводимых знаков за сме­ну - 54 400, т. е. 54 400 мелких локальных движений. Следовательно, по данному пока­зателю (п. 3.1 руководства) его работу относят к классу 3.1

Региональные рабочие движения выполняются, как правило, в более медленном темпе и легко подсчитать их количество за 10—15 мин или за 1—2 повторяемые операции, несколько раз за смену. После этого, зная общее количество операций или время выполне­ния работы, подсчитываем общее количество региональных движений за смену.

Пример 2. Маляр выполняет около 80 движений большой амплитуды в минуту. Всего основная работа занимает 65 % рабочего времени, т. е. 312 минут за смену. Ко­личество движений за смену = 24 960 (312 х 80), что в соответствии с п. 3.2 руково­дства позволяет отнести его работу к классу 3.1.

4. Статическая нагрузка
(величина статической нагрузки за смену при удержании груза,
приложении усилий, кгс • с)

Статическая нагрузка, связанная с удержанием груза или приложением усилия, рассчитывается путем перемножения двух параметров: величины удерживаемого уси­лия (веса груза) и времени его удерживания.

В процессе работы статические усилия встречаются в различных видах: удержа­ние обрабатываемого изделия (инструмента), прижим обрабатываемого инструмента (изделия) к обрабатываемому изделию (инструменту), усилия для перемещения органов управления (рукоятки, маховики, штурвалы) или тележек. В первом случае величина статического усилия определяется весом удерживаемого изделия (инструмента). Вес изделия определяется путем взвешивания на весах. Во втором случае величина усилия прижима может быть определена с помощью тензометрических, пьезокристаллических или других датчиков, которые необходимо закрепить на инструменте или изделии. В третьем случае усилие на органах управления можно определить с помощью динамо­метра или по документам. Время удерживания статического усилия определяется на основании хронометражных измерений (или по фотографии рабочего дня). Оценка класса условий труда по этому показателю должна осуществляться с учетом преиму­щественной нагрузки: на одну, две руки или с участием мышц корпуса и ног. Если при выполнении работы встречается 2 или 3 указанных выше нагрузки (нагрузки на одну, две руки и с участием мышц корпуса и ног), то их следует суммировать и суммарную величину статической нагрузки соотносить с показателем преимущественной нагрузки (п.п. 4.1—4.3 руководства).

Пример 1. Маляр (женщина) промышленных изделий при окраске удерживаете руке краскопульт весом 1,8 кгс, в течение 80 % времени смены, т. е. 23 040 с. Величина статической нагрузки будет составлять 41 427 кгс • с (1,8 кгс 23 040 с). Работа по дан­ному показателю относится к классу 3.1.

5. Рабочая поза

Характер рабочей позы (свободная, неудобная, фиксированная, вынужденная) определяется визуально. К свободным позам относят удобные позы сидя, которые дают возможность изменения рабочего положения тела или его частей (откинуться на спинку стула, изменить положение ног, рук). Фиксированная рабочая поза - невозможность изменения взаимного положения различных частей тела относительно друг друга. По­добные позы встречаются при выполнении работ, связанных с необходимостью в про­цессе деятельности различать мелкие объекты. Наиболее жестко фиксированы рабочие позы у представителей тех профессий, которым приходится выполнять свои основные производственные операции с использованием оптических увеличительных приборов -луп и микроскопов. К неудобным рабочим позам относятся позы с большим наклоном или поворотом туловища, с поднятыми выше уровня плеч руками, с неудобным разме­щением нижних конечностей. К вынужденным позам относятся рабочие позы лежа, на коленях, на корточках и т. д. Абсолютное время (в минутах, часах) пребывания в той или иной позе определяется на основании хронометражных данных за смену, после че­го рассчитывается время пребывания в относительных величинах, т. е. в процентах к 8-часовой смене (независимо от фактической длительности смены). Если по характеру работы рабочие позы разные, то оценку следует проводить по наиболее типичной позе для данной работы.

Пример 1. Врач-лаборант около 40 % рабочего времени смены проводит в фик­сированной позе - работает с микроскопом. По этому показателю работу можно отне­сти к классу 3.1.

Работа в положении стоя - необходимость длительного пребывания работающе­го человека в ортостатическом положении (либо в малоподвижной позе, либо с пере­движениями между объектами труда). Следовательно, время пребывания в положении стоя будет складываться из времени работы в положении стоя и из времени перемеще­ния в пространстве.

Пример 2. Дежурный электромонтер (длительность смены - 12 часов) при вызо­ве на объект выполняет работу в положении стоя. На эту работу и на перемещение к месту работы у него уходит 4 часа за смену. Следовательно, исходя из 8-часовой сме­ны, 50 % рабочего времени он проводит в положении стоя - класс 2.

6. Наклоны корпуса (количество за смену)

Число наклонов за смену определяется путем их прямого подсчета в единицу времени (несколько раз за смену), затем рассчитывается число наклонов за все время

выполнения работы, либо определением их количества за одну операцию и умножени­ем на число операций за смену. Глубина наклонов корпуса (в градусах) измеряется с помощью любого простого приспособления для измерения углов (например, транспор­тира). При определении угла наклона можно не пользоваться приспособлениями для измерения углов, т. к. известно, что у человека со средними антропометрическими дан­ными наклоны корпуса более 30° встречаются, если он берет какие-либо предметы, поднимает груз или выполняет действия руками на высоте не более 50 см от пола.

Пример. Для того, чтобы взять детали из контейнера, стоящего на полу, работ­ница совершает за смену до 200 глубоких наклонов (более 30°). По этому показателю труд относят к классу 3.1.

7. Перемещение в пространстве
(переходы, обусловленные технологическим процессом, в течение смены
по горизонтали или вертикали - по лестницам, пандусам и др., км

Самый простой способ определения этой величины - с помощью шагомера, ко­торый можно поместить в карман работающего или закрепить на его поясе, определить количество шагов за смену (во время регламентированных перерывов и обеденного пе­рерыва шагомер снимать). Количество шагов за смену умножить на длину шага (муж­ской шаг в производственной обстановке в среднем равняется 0,6 м, а женский - 0,5 м), и полученную величину выразить в км. Перемещением по вертикали можно считать перемещения по лестницам или наклонным поверхностям, угол наклона которых более 30° от горизонтали. Для профессий, связанных с перемещением как по горизонтали, так и по вертикали, эти расстояния можно суммировать и сопоставлять с тем показателем, величина которого была больше.

Пример. По показателям шагомера работница при обслуживании станков делает около 12 000 шагов за смену. Расстояние, которое она проходит за смену составляет 6 000 м или 6 км (12 000 • 0,5 м). По этому показателю тяжесть труда относится ко вто­рому классу.

8. Общая оценка тяжести трудового процесса

Общая оценка по степени физической тяжести проводится на основе всех при­веденных выше показателей. При этом в начале устанавливается класс по каждому из­меренному показателю и вносится в протокол, а окончательная оценка тяжести труда устанавливается по показателю, отнесенному к наибольшему классу. При наличии двух и более показателей класса 3.1 и 3.2 общая оценка устанавливается на одну степень выше.

 

Пример оценки тяжести труда

Описание работы. Укладчица хлеба вручную в позе стоя (75 % времени смены) укладывает готовый хлеб с укладочного стола в лотки. Одновременно берет 2 батона (в каждой руке по батону), весом 0,4 кг каждый (одноразовый подъем груза составляет 0,8 кг) и переносит на расстояние 0,8 м. Всего за смену укладчица укладывает 550 лот­ков, в каждом из которых по 20 батонов. Следовательно, за смену она укладывает 11 000 батонов. При переносе со стола в лоток работница удерживает батоны в течение грех секунд. Лотки, в которые укладывают хлеб, стоят в контейнерах и при укладке в нижние ряды работница вынуждена совершать глубокие (более 30°) наклоны, число которых достигает 200 за смену.

Проведем расчеты:

п. 1.1 - физическая динамическая нагрузка: 0,8 кг х 0,8 м х 5 500 (т. к за один раз работница поднимает 2 батона) = 3 520 кгм - класс 3.1;

п. 2.2 - масса одноразового подъема груза: 0,8 кг - класс 1;

п. 2.3 - суммарная масса груза в течение каждого часа смены - 0,8 кг х 5 500 =

4 400 кг и разделить на 8 ч работы в смену = 550 кг- класс 3.1;

п. 3.2 - стереотипные движения (региональная нагрузка на мышцы рук и плече­вого пояса): количество движений при укладке хлеба за смену достигает 21 000 - класс 3.1;

п.п. 4.1—4.2 - статическая нагрузка одной рукой: 0,4 кг х 3 с = 1,2 кгс, т. к. ба­тон удерживается в течение 3 с. Статическая нагрузка за смену одной рукой 1,2 кгс х

5 500 = 6 600 кгс, двумя руками - 13 200 кгс (класс 1);

п. 5. - рабочая поза: поза стоя до 80 % времени смены - класс 3.1; п. 6 - наклоны корпуса за смену - класс 3.1;

п. 7 - перемещение в пространстве: работница в основном стоит на месте, пере­мещения незначительные, до 1,5 км за смену. Вносим показатели в протокол.

 


Протокол
 оценки условий труда по показателям тяжести трудового процесса
(рекомендуемый)

Ф., И., О._______________________ Иванова В. Д._____________ пол ж___________________

Профессия:___________________ укладчица хлеба____________________________________

Предприятие:_____________________ Хлебзавод______________________________________

Краткое описание выполняемой работы: Укладчица хлеба вручную укладывает           

___________________________________________ готовый хлеб с укладочного стола в лотки.

 

Показатели Факт, значения Класс
1 2 3 4
1 Физическая динамическая нагрузка (кгхм): регио­нальная - перемещение груза до 1 м общая на­грузка: перемещение груза 3 520 3.1
1.1 от 1 до 5 м -  
1.2 более 5 м -  
2 Масса поднимаемого и перемещаемого вручную груза (кг):    
2.1 при чередовании с другой работой - 1
2.2 постоянно в течение смены 0,8 1
2.3 суммарная масса за каждый час смены:    
  с рабочей поверхности 550 3.1
  с пола    
3 Стереотипные рабочие движения (кол-во):    
3.1 локальная нагрузка - 1
3.2 региональная нагрузка 21 000 3.1
4 Статическая нагрузка (кгс ∙ с)    
4.1 одной рукой -  
4.2 двумя руками 13 200  
4.3 с участием корпуса и ног -  
5 Рабочая поза стоя 75 % 3.1
6 Наклоны корпуса (количество за смену) 200 3.1
7 Перемещение в пространстве (км):    
7.1 по горизонтали 1,5  
7.2 по вертикали -  

Окончательная оценка тяжести труда

  3.2

Итак, из 9 показателей, характеризующих тяжесть труда, 5 относятся к классу 3.1. Учитывая пояснения раздела 8 (при наличии 2-х и более показателей класса 3.1, общая оценка повышается на одну степень), окончательная оценка тяжести трудового процесса укладчицы хлеба - класс 3.2.


Приложение 16

 обязательное

Методика
 оценки напряженности трудового процесса

Напряженность трудового процесса оценивают в соответствии с настоящими «Гигиеническими критериями оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса».

Оценка напряженности труда профессиональной группы работников основана на анализе трудовой деятельности и ее структуры, которые изучаются путем хронометражных наблюдений в динамике всего рабочего дня, в течение не менее одной недели. Анализ осно­ван на учете всего комплекса производственных факторов (стимулов, раздражителей), соз­дающих предпосылки для возникновения неблагоприятных нервно-эмоциональных состоя­ний (перенапряжения). Все факторы (показатели) трудового процесса имеют качественную или количественную выраженность и сгруппированы по видам нагрузок: интеллектуальные, сенсорные, эмоциональные, монотонные, режимные нагрузки.

1. Нагрузки интеллектуального характера

1.1. «Содержание работы» указывает на степень сложности выполнения зада­ния: от решения простых задач до творческой (эвристической) деятельности с решени­ем сложных заданий при отсутствии алгоритма.

Различия между классами 2 и 3.1 практически сводятся к двум пунктам: «реше­ние простых» (класс 2) или «сложных задач с выбором по известным алгоритмам» (класс 3.1) и «решение задач по инструкции» (класс 2) или «работа по серии инструк­ций» (класс 3.1).

В случае применения оценочного критерия «простота - сложность решаемых за­дач» можно воспользоваться таблицей, где приведены некоторые характерные призна­ки простых и сложных задач.

Некоторые признаки сложности решаемых задач

Простые задачи Сложные задачи
1. Не требуют рассуждений 1. Требуют рассуждений
2. Имеют ясно сформулированную цель 2. Цель сформулирована только в общем (например, руководство работой бригады)
3. Отсутствует необходимость построения внутренних представлений о внешних событиях 3. Необходимо построение внутренних представлений о внешних событиях
4. План решения всей задачи содержится в ин­струкции (инструкциях) 4. Решение всей задачи необходимо плани­ровать
5. Задача может включать несколько подзадач, не связанных между собой или связанных толь­ко последовательностью действий. Информа­ция, полученная при решении подзадачи, не анализируется и не используется при решении другой подзадачи 5. Задача всегда включает решение связан­ных логически подзадач, а информация, по­лученная при решении каждой подзадачи, анализируется и учитывается при решении следующей подзадачи
6. Последовательность действий известна, либо она не имеет значения 6. Последовательность действий выбирается исполнителем и имеет значение для решения задачи

Например, в задачу лаборанта химического анализа входят подзадачи (опера­ции): отбор проб (как правило), приготовление реактивов, обработка проб (с помощью химрастворов, сжигания) и количественная оценка содержания анализируемых веществ в пробе. Каждая подзадача имеет четкие инструкции, ясно сформулированные цели и предопределенный конечный результат с известной последовательностью действий т. е. по указанным выше признакам он решает простые задачи (класс 2). Работа инже­нера-химика, например, носит совершенно иной характер. Вначале он должен опреде­лить качественный состав пробы, используя иногда сложные методы качественного анализа (планирование задачи, выбор последовательности действий и анализ результа­тов подзадачи), затем разработать модель выполнения работ для лаборантов, используя информацию, полученную при решении предыдущей подзадачи. Затем, на основе всей полученной информации, инженер проводит окончательную оценку результатов, т. е. задача может быть решена только с помощью алгоритма как логической совокупности правил (класс 3.1).

Применяя оценочный критерий «работа по инструкции - работа по серии инст­рукций», следует обратить внимание на то, что иногда число инструкций, характери­зующих содержание работы, не является достаточно надежной характеристикой интел­лектуальных нагрузок.

Например, лаборант химического анализа может работать по нескольким инст­рукциям, тогда как заведующий химлабораторией работает по одной должностной ин­струкции. Поэтому здесь следует обращать внимание на те случаи, когда общая инст­рукция, являясь формально единственной, содержит множество отдельных инструкций, и в этом случае оценивать деятельность как работу по серии инструкций.

Различия между классами 3.1 и 3.2 по показателю «содержание работы» (интел­лектуальные нагрузки) заключаются лишь в одной характеристике - используются ли решения задач по известным алгоритмам (класс 3.1) либо эвристические приемы (класс 3.2). Они отличаются друг от друга наличием или отсутствием гарантии получе­ния правильного результата. Алгоритм - это логическая совокупность правил, которая, если ей следовать, всегда приводит к верному решению задачи. Эвристические приемы - это некоторые эмпирические правила (процедуры или описания), пользование кото­рыми не гарантирует успешного выполнения задачи. Следовательно, классом 3.2 долж­на оцениваться такая работа, при которой способы решения задачи заранее не извест­ны.

Дополнительным признаком класса 3.2 является «единоличное руководство в сложных ситуациях». Здесь необходимо рассматривать лишь те ситуации, которые мо­гут возникнуть внезапно (как правило, это предаварийные или аварийные ситуации) и имеют чрезвычайный характер (например, возможность остановки технологического процесса, поломки сложного и дорогостоящего оборудования, возникновение опасно­сти для жизни), а также, если руководство действиями других лиц в таких ситуациях обусловлено должностной инструкцией, действующей на аттестуемом рабочем месте.

Таким образом, классом 3.1 необходимо оценивать такие работы, где принятие решений происходит на основе необходимой и достаточной информации по известному алгоритму (как правило, это задачи диагностики или выбора), а классом 3.2 оценивать работу, когда решения необходимо принимать в условиях неполной или недостаточной информации (как правило, это решения в условиях неопределенности), а алгоритм ре­шения отсутствует. Имеет значение и постоянство решения таких задач.

Например, диспетчер энергосистемы решает обычно задачи, оцениваемые клас­сом 3.1, а при возникновении аварийных ситуаций — и задачи класса 3.1, если задача является типичной и встречавшейся ранее, и класса 3.2, если такая ситуация встречает-

ся впервые. Поскольку задачи класса 3.2 встречаются намного реже, работу диспетчера следует оценить по критерию «содержание работы» классом 3.1.

Примеры. Наиболее простые задачи решают лаборанты[§] (1 класс условий тру­да** ), а деятельность, требующая решения простых задач, но уже с выбором (по инст­рукции) характерна для медицинских сестер, телефонистов, телеграфистов и т. п. (2 класс). Сложные задачи, решаемые по известному алгоритму (работа по серии инст­рукций), имеет место в работе руководителей, мастеров промышленных предприятий, водителей транспортных средств, авиадиспетчеров и др. (класс 3.1). Наиболее сложная по содержанию работа, требующая в той или иной степени эвристической (творческой) деятельности установлена у научных работников, конструкторов, врачей разного про­филя и др. (класс 3.2).

1.2. «Восприятие сигналов (информации) и их оценка». Критериальным с точки зрения различий между классами напряженности трудового процесса является устано­вочная цель (или эталонная норма), которая принимается для сопоставления посту­пающей при работе информации с номинальными значениями, необходимыми для ус­пешного хода рабочего процесса.

К классу 2 относится работа, при которой восприятие сигналов предполагает по­следующую коррекцию действий или операций. При этом под действием следует по­нимать элемент деятельности, в процессе которого достигается конкретная, не разла­гаемая на более простые, осознанная цель, а под операцией - законченное действие (или сумма действий), в результате которого достигается элементарная технологиче­ская цель.

Например, у токаря обработка простой детали выполняется посредством ряда операций (закрепление детали, обработка наружной и внутренней поверхностей, обре­зание уступов и т. д.), каждая из которых включает ряд элементарных действий, иногда называемых приемами. Коррекция действий и операций здесь заключается в сравнении с определенными несложными и не связанными между собой «эталонами», операции являются отдельными и законченными элементарными составными частями техноло­гического процесса, а воспринимаемая информация и соответствующая коррекция но­сит характер «правильно-неправильно» по типу процесса идентификации, для которой характерно оперирование целостными эталонами. К типичным примерам можно отне­сти работу контролера, станочника, электрогазосварщика и большинства представите­лей массовых рабочих профессий, основой которых является предметная деятельность.

«Эталоном» при работах, характеризующихся по данному показателю напря­женностью класса 3.1. является совокупность информации, характеризующей наличное состояние объекта труда при работах, основой которых является интеллектуальная дея­тельность. Коррекция (сравнение с эталоном), производится здесь по типу процесса опознавания, включая процессы декодирования, информационного поиска и информа­ционной подготовки решения на основе мышления с обязательным использованием ин­теллекта, т. е. умственных способностей исполнителя. К таким работам относится большинство профессий операторского и диспетчерского типа, труд научных работни­ков. Восприятие сигналов с последующим сопоставлением фактических значений па­раметров (информации) с их номинальными требуемыми уровнями отмечается в работе медсестер, мастеров, телефонистов и телеграфистов и др. (класс 3.1).

Классом 3.2 оценивается работа, связанная с восприятием сигналов с последую­щей комплексной оценкой всей производственной деятельности. В этом случае, когда

трудовая деятельность требует восприятия сигналов с последующей комплексной оценкой всех производственных параметров (информации), соответственно такой труд по напряженности относится к классу 3.2 (руководители промышленных предприятий, водители транспортных средств, авиадиспетчеры, конструкторы, врачи, научные ра­ботники и т. д.).

1.3. «Распределение функций по степени сложности задания». Любая трудовая
деятельность характеризуется распределением функций между работниками. Соответ­
ственно, чем больше возложено функциональных обязанностей на работника, тем выше
напряженность его труда.

По данному показателю класс 2 (допустимый) и класс 3 (напряженный труд) различаются по двум характеристикам - наличию или отсутствию функции контроля и работы по распределению заданий другим лицам. Классом 3.1 характеризуется работа, обязательным элементом которой является контроль выполнения задания. Здесь имеет­ся в виду контроль выполнения задания другими лицами, поскольку контроль выпол­нения своих заданий должен оцениваться классом 2 (обработка, выполнение задания и его проверка, которая, по сути, и является контролем).

Примером работ, включающих контроль выполнения заданий, может являться рабо­та инженера по охране труда, инженера производственно-технического отдела, и др.

Классом 3.2 оценивается по данному показателю такая работа, которая включает не только контроль, но и предварительную работу по распределению заданий другим лицам.

Так, трудовая деятельность, содержащая простые функции, направленные на об­работку и выполнение конкретного задания, не приводит к значительной напряженно­сти труда. Примером такой деятельности является работа лаборанта (класс 1). Напря­женность возрастает, когда осуществляется обработка, выполнение с последующей проверкой выполнения задания (класс 2), что характерно для таких профессий, как ме­дицинские сестры, телефонисты и т. п.

Обработка, проверка и, кроме того, контроль за выполнением задания указывает на большую степень сложности выполняемых функций работником, и, соответственно, в большей степени проявляется напряженность труда (мастера промышленных предпри­ятий, телеграфисты, конструкторы, водители транспортных средств - класс 3.1).

Наиболее сложная функция - это предварительная подготовительная работа с последующим распределением заданий другим лицам (класс 3.2), которая характерна для таких профессий как руководители промышленных предприятий, авиадиспетчеры, научные работники, врачи и т. п.

1.4. «Характер выполняемой работы» - в том случае, когда работа выполняется
по индивидуальному плану, то уровень напряженности труда невысок (1 класс - лабо­
ранты). Если работа протекает по строго установленному графику с возможной его кор­
рекцией по мере необходимости, то напряженность повышается (2 класс - медсестры,
телефонисты, телеграфисты и др.). Еще большая напряженность труда характерна, когда
работа выполняется в условиях дефицита времени (класс 3.1 - мастера промышленных
предприятий, научные работники, конструкторы). Наибольшая напряженность (класс
3.2) характеризуется работой в условиях дефицита времени и информации. При этом от­
мечается высокая ответственность за конечный результат работы (врачи, руководители
промышленных предприятий, водители транспортных средств, авиадиспетчеры).

Таким образом, критериями для отнесения работ по данному показателю к клас­су 3.1 (напряженный труд 1 степени) является работа в условиях дефицита времени. В практике работы под дефицитом времени понимают, как правило, большую загружен­ность работой, на основании чего практически любую работу оценивают по данному показателю классом 3.1. Здесь необходимо руководствоваться требованием настоящего

руководства, согласно которому оценку условий труда должны выполнять при прове­дении технологических процессов в соответствии с технологическим регламентом. По­этому классом 3.1 по показателю «характер выполняемой работы» должна оцениваться лишь такая работа, при которой дефицит времени является ее постоянной и неотъемле­мой характеристикой, и при этом успешное выполнение задания возможно только при правильных действиях в условиях такого дефицита.

Напряженный труд 2 степени (класс 3.2) характеризует такую работу, которая происходит в условиях дефицита времени и информации с повышенной ответствен­ностью за конечный результат. В отношении дефицита времени следует руководство­ваться изложенными выше соображениями, а что касается повышенной ответственно­сти за конечный результат, то такая ответственность должна быть не только субъектив­но осознаваемой, поскольку на любом рабочем месте исполнитель такую ответствен­ность осознает и несет, но и возлагаемой на исполнителя должностной инструкцией. Степень ответственности должна быть высокой - это ответственность за нормальный ход технологического процесса (например, диспетчер, машинист котлов, турбин и бло­ков на энергопредприятии), за сохранность уникального, сложного и дорогостоящего оборудования и за жизнь других людей (мастера, бригадиры).

В качестве примера степени ответственности приведем работу врачей. Работа далеко не всех врачей характеризуется одинаковым уровнем напряженности по харак­теру работы: например, работа врачей скорой помощи, хирургов (оперирующих), трав­матологов, анестезиологов, реаниматоров, без сомнения, может быть оценена по рас­сматриваемому показателю классом 3.2 (дефицит времени, информации и повышенная ответственность за конечный результат), тогда как работа, например, врачей поликли­ники - терапевтов, окулистов и других, - таким критериям не соответствует, так же как работа, например, врачей-гигиенистов.

2. Сенсорные нагрузки

2.1. «Длительность сосредоточенного наблюдения (в % от времени смены)» -чем больше процент времени отводится в течение смены на сосредоточенное наблюде­ние, тем выше напряженность. Общее время рабочей смены принимается за 100 %.

Пример. Наибольшая длительность сосредоточенного наблюдения за ходом тех­нологического процесса отмечается у операторских профессий: телефонисты, телегра­фисты, авиадиспетчеры, водители транспортных средств( более 75 % смены - класс 3.2). Несколько ниже значение этого параметра (51—75 %) установлено у врачей (класс 3.1). От 26 до 50 % значения этого показателя колебалось у медицинских сестер, масте­ров промышленных предприятий (2 класс). Самый низкий уровень этого показателя наблюдается у руководителей предприятия, научных работников, конструкторов (1 класс - до 25 % от общего времени смены).

В основе этого процесса, характеризующего напряженность труда, лежит сосре­доточение, или концентрация внимания на каком-либо реальном (водитель) или иде­альном (переводчик) объекте, поэтому данный показатель следует трактовать шире, как «длительность сосредоточения внимания», которое проявляется в углубленности в дея­тельность. Определяющей характеристикой здесь является именно сосредоточение внимания в отличие от пассивного характера наблюдения за ходом технологического процесса, когда исполнитель периодически, время от времени контролирует состояние какого-либо объекта.

Различия здесь определяются следующим. Длительное сосредоточенное наблю­дение необходимо в тех профессиях, где состояние наблюдаемого объекта все время изменяется, и деятельность исполнителя заключается в периодическом решении ряда задач, непрерывно следующих друг за другом, на основе получаемой и постоянно ме­няющейся информации (врачи-хирурги в процессе операции, корректоры, переводчики, авиадиспетчеры, водители, операторы радиолокационных станций, и т. д.).

Наиболее часто по данному критерию встречаются две ошибки. Первая заклю­чается в том, что данным показателем оцениваются такие работы, когда наблюдение не является сосредоточенным, а осуществляется в дискретном режиме, как, например, у диспетчеров на щитах управления технологическими процессами, когда они время от времени отмечают показания приборов при нормальном ходе процесса. Вторая ошибка состоит в том, что высокие показатели по длительности сосредоточенного наблюдения присваиваются априорно, только из-за того, что в профессиональной деятельности дан­ная характеристика ярко выражена, как, например, у водителей.

Так, у водителей транспортных средств длительность сосредоточенного наблю­дения в процессе управления транспортным средством в среднем более 75 % времени смены; на этом основании работа всех водителей оценивается по данному показателю классом 3.2. Однако, это справедливо далеко не для всех водителей.

Например, этот показатель существенно ниже у водителей вахтовых и пожарных автомобилей, а также автомобилей, на которых смонтировано специальное оборудова­ние (бурильные, паровые установки, краны, и др.). Поэтому данный показатель необхо­димо оценивать в каждом конкретном случае по его фактическому значению, получае­мому либо с помощью хронометража, либо иным способом.

Например, у сварщиков длительность сосредоточенного наблюдения достаточно точно можно определить, измерив время сгорания одного электрода и подсчитав число использованных за рабочую смену электродов. У водителей автомобилей его легко оп­ределить по показателю сменного пробега (в км), деленному на среднюю скорость движения автомобиля (км в час) на данном участке, сведения о которой можно полу­чить в соответствующем отделении Российской транспортной инспекции. На практике достаточно часто такие расчеты показывают, что суммарное время вождения автомо­биля и, соответственно, длительность сосредоточенного наблюдения не превышают 2—4 часов за рабочую смену. Хорошие результаты дает также использование техноло­гической документации, например, карт технологического процесса, паспортов рабочих мест, и др.

2.2. «Плотность сигналов (световых, звуковых) и сообщений в среднем за 1 час работы» - количество воспринимаемых и передаваемых сигналов (сообщений, распо­ряжений) позволяет оценивать занятость, специфику деятельности работника. Чем больше число поступающих и передаваемых сигналов или сообщений, тем выше ин­формационная нагрузка, приводящая к возрастанию напряженности. По форме (или способу) предъявления информации сигналы могут подаваться со специальных уст­ройств (световые, звуковые сигнальные устройства, шкалы приборов, таблицы, графи­ки и диаграммы, символы, текст, формулы и т. д.) и при речевом сообщении (по теле­фону и радиофону, при непосредственном прямом контакте работников).

Пример. Наибольшее число связей и сигналов с наземными службами и с эки­пажами самолетов отмечается у авиадиспетчеров - более 300 (класс 3.2) Производст­венная деятельность водителя во время управления транспортными средствами не­сколько ниже - в среднем около 200 сигналов в течение часа (класс 3.1) К этому же классу относится труд телеграфистов. В диапазоне от 75 до 175 сигналов поступает в течение часа у телефонистов (число обслуженных абонементов в час от 25 до 150). У медицинских сестер и врачей реанимационных отделений (срочный вызов к больному, сигнализация с мониторов о состоянии больного) - 2 класс. Наименьшее число сигналов и сообщений характерно для таких профессий, как лаборанты, руководители, мас­тера, научные работники, конструкторы - 1 класс.

Существенных ошибок можно избежать, если не присваивать высоких значений данного показателя во всех случаях и только вследствие того, что восприятие сигналов и сообщений является характерной особенностью работы. Например, водитель город­ского транспорта воспринимает в час около 200 сигналов. Однако, этот показатель мо­жет быть существенно ниже у водителей, например, междугородных автобусов, води­телей «дальнобойщиков», водителей вахтовых автомобилей или в случаях, когда плот­ность транспортного потока невелика, что характерно для сельской местности. Точно так же телеграфисты и телефонисты узла связи крупного города будут существенно от­личаться по данному показателю от коллег, работающих в небольшом узле связи.

2.3. «Число производственных объектов одновременного наблюдения» - указывает, что с увеличением числа объектов одновременного наблюдения возрастает напряженность труда. Эта характеристика труда предъявляет требования к объему вни­мания (от 4 до 8 не связанных объектов) и его распределению как способности одно­
временно сосредотачивать внимание на нескольких объектах или действиях.

Необходимым условием для того, чтобы работа оценивалась данным показате­лем, является время, затрачиваемое от получения информации от объектов одновре­менного наблюдения до действий: если это время существенно мало и действия необ­ходимо выполнять сразу же после приема информации одновременно от всех необхо­димых объектов (иначе нарушится нормальный ход технологического процесса или возникнет существенная ошибка), то работу необходимо характеризовать числом про­изводственных объектов одновременного наблюдения (пилоты, водители, машинисты других транспортных средств, операторы, управляющие роботами и манипуляторами, и др.). Если же информация может быть получена путем последовательного переклю­чения внимания с объекта на объект и имеется достаточно времени до принятия реше­ния и/или выполнения действий, а человек обычно переходит от распределения к пере­ключению внимания, то такую работу не следует оценивать по показателю «число объ­ектов одновременного наблюдения» (дежурный электрослесарь по КИПиА, контролер-обходчик, комплектовщик).

Пример. Для операторского вида деятельности объектами одновременного на­блюдения служат различные индикаторы, дисплеи, органы управления, клавиатура и т. п. Наибольшее число объектов одновременного наблюдения установлено у авиа­диспетчеров - 13, что соответствует классу 3.1, несколько ниже это число у телеграфи­стов - 8—9 телетайпов, у водителей автотранспортных средств (2 класс). До 5 объектов одновременного наблюдения отмечается у телефонистов, мастеров, руководителей, медсестер, врачей, конструкторов и других (1 класс).

2.4. «Размер объекта различения при длительности сосредоточенного внимания
(% от времени смены)»
. Чем меньше размер рассматриваемого предмета (изделия, де­
тали, цифровой или буквенной информации и т. п.) и чем продолжительнее время наблюдения, тем выше нагрузка на зрительный анализатор. Соответственно возрастает
класс напряженности труда.

В качестве основы размеров объекта различения взяты категории зрительных работ из СНиП 23-05—95 «Естественное и искусственное освещение». При этом необ­ходимо рассматривать лишь такой объект, который несет смысловую информацию, не­обходимую для выполнения данной работы. Так, у контролеров это минимальный раз­мер дефекта, который необходимо выявить, у операторов ПЭВМ - размер буквы или цифры, у оператора — размер шкалы прибора, и т. д. (Часто учитывается только эта ха­рактеристика и не учитывается другая, в той же степени необходимая – длительность сосредоточения внимания на данном объекте, которая является равноценной и обяза­тельной.)

В ряде случаев, когда размеры объекта малы, прибегают к помощи оптических приборов, увеличивающих эти размеры. Если к оптическим приборам прибегают, вре­мя от времени, для уточнения информации, объектом различения является непосредст­венный носитель информации. Например, врачи-рентгенологи при просмотре флюоро­графических снимков должны дифференцировать затемнения диаметром до 1 мм (класс 3.1), и время от времени для уточнения информации пользуются лупой, что увеличива­ет размер объекта и переводит его в класс 2, однако основная работа по просмотру снимков проводится без оптических приборов, поэтому такая работа должна оцени­ваться по данному критерию классом 3.1.

В случае, если размер объекта настолько мал, что он неразличим без применения оптических приборов, и они применяются постоянно (например, при подсчете формен­ных элементов крови, размеры которых находятся в пределах 0.006—0.015 мм, врач-лаборант всегда использует микроскоп), должен регистрироваться размер увеличенного объекта.

2.5. «Работа с оптическими приборами (микроскоп, лупа и т.п.) при длительно­
сти сосредоточенного наблюдения (% от времени смены)».
На основе хрономеграж­
ных наблюдений определяется время (часы, минуты) работы за оптическим прибором.
Продолжительность рабочего дня принимается за 100%, а время фиксированного
взгляда с использованием микроскопа, лупы переводится в проценты - чем больше
процент времени, тем больше нагрузка, приводящая к развитию напряжения зрительно­
го анализатора.

К оптическим приборам относятся те устройства, которые применяются для уве­личения размеров рассматриваемого объекта - лупы, микроскопы, дефектоскопы, либо используемых для повышения разрешающей способности прибора или улучшения ви­димости (бинокли), что также связано с увеличением размеров объекта. К оптическим приборам не относятся различные устройства для отображения информации (дисплеи), в которых оптика не используется - различные индикаторы и шкалы, покрытые стек­лянной или прозрачной пластмассовой крышкой.

2.6. «Наблюдение за экраном видеотерминала (ч в смену)». Согласно этому по­
казателю фиксируется время (ч, мин) непосредственной работы пользователя ВДТ с
экраном дисплея в течение всего рабочего дня при вводе данных, редактировании тек­
ста или программ, чтении информации буквенной, цифровой, графической с экрана.
Чем больше время фиксации взора на экран пользователя ВДТ, тем больше нагрузка на
зрительный анализатор и тем выше напряженность труда.

Критерий «наблюдение за экранами видеотерминалов» следует применять для характеристики напряженности трудового процесса на всех рабочих местах, которые оборудованы средствами отображения информации как на электронно-лучевых, так и на дискретных (матричных) экранах (дисплеи, видеомодули, видеомониторы, видео­терминалы).

2.7. «Нагрузка на слуховой анализатор». Степень напряжения слухового анали­
затора определяется по зависимости разборчивости слов в процентах от соотношения
между уровнем интенсивности речи и «белого» шума. Когда помех нет, разборчивость
слов равна 100 % - 1 класс. Ко 2-му классу относятся случаи, когда уровень речи пре­
вышает шум на 10—15 дБА и соответствует разборчивости слов, равной 90—70 % или
на расстоянии до 3,5 м и т. п.

Наиболее часто встречаемой ошибкой при оценке напряженности трудового процесса является та, когда данным показателем характеризуется любая работа, прово-

дящаяся в условиях повышенного уровня шума. Показателем «нагрузка на слуховой анализатор» необходимо характеризовать такие работы, при которых исполнитель в условиях повышенного уровня шума должен воспринимать на слух речевую информа­цию или другие звуковые сигналы, которыми он руководствуется в процессе работы. Примером работ, связанных с нагрузкой на слуховой анализатор, является труд теле­фониста производственной связи, звукооператора ТВ, радио, музыкальных студий.

2.8. «Нагрузка на голосовой аппарат (суммарное количество часов наговари­ваемых в неделю)». Степень напряжения голосового аппарата зависит от продолжи­тельности речевых нагрузок. Перенапряжение голоса наблюдается при длительной, без отдыха голосовой деятельности.

Пример. Наибольшие нагрузки (класс 3.1 или 3.2) отмечаются у лиц голосо-речевых профессий (педагоги, воспитатели детских учреждений, вокалисты, чтецы, ак­теры, дикторы, экскурсоводы и т. д.). В меньшей степени такой вид нагрузки характе­рен для других профессиональных групп (авиадиспетчеры, телефонисты, руководители и т. д. - 2 класс). Наименьшие значения критерия могут отмечаться в работе других профессий, таких как лаборанты, конструкторы, водители автотранспорта (1 класс).

3. Эмоциональные нагрузки

3.1. «Степень ответственности за результат собственной деятельности. Зна­чимость ошибки» - указывает, в какой мере работник может влиять на результат соб­ственного труда при различных уровнях сложности осуществляемой деятельности. С возрастанием сложности повышается степень ответственности, поскольку ошибочные действия приводят к дополнительным усилиям со стороны работника или целого кол­лектива, что соответственно приводит к увеличению эмоционального напряжения.

Для таких профессий, как руководители и мастера промышленных предприятий, авиадиспетчеры, врачи, водители транспортных средств и т. п. характерна самая высо­кая степень ответственности за окончательный результат работы, а допущенные ошиб­ки могут привести к остановке технологического процесса, возникновению опасных ситуаций для жизни людей (класс 3.2).

Если работник несет ответственность за основной вид задания, а ошибки приво­дят к дополнительным усилиям со стороны целого коллектива, то эмоциональная на­грузка в данном случае уже несколько ниже (класс 3.1): медсестры, научные работники, конструкторы. В том случае, когда степень ответственности связана с качеством вспо­могательного задания, а ошибки приводят к дополнительным усилиям со стороны вы­шестоящего руководства (в частности, бригадира, начальника смены и т. п.), то такой труд по данному показателю характеризуется еще меньшим проявлением эмоциональ­ного напряжения (2 класс): телефонисты, телеграфисты. Наименьшая значимость кри­терия отмечается в работе лаборанта, где работник несет ответственность только за вы­полнение отдельных элементов продукции, а в случае допущенной ошибки дополни­тельные усилия только со стороны самого работника (1 класс).

Таким образом, по данному показателю оценивается ответственность работника за качество элементов заданий вспомогательных работ, основной работы или конечной продукции. Например, для токаря конечной продукцией являются изготовленные им детали, для мастера токарного участка - все детали, изготовленные на этом участке, а для начальника механического цеха - работа всего цеха. Поэтому при использовании данного критерия возможен следующий подход.

Класс 1 - ответственность за качество действий или операций, являющихся эле­ментом трудового процесса по отношению к его конечной цели, а ошибка исправляется самим работающим на основе самоконтроля или внешнего, формального контроля по

типу «правильно-не правильно» (все виды подсобных работ, санитарки, уборщицы, грузчики и т. д.).

Класс 2 - ответственность за качество деятельности, являющейся технологиче­ским циклом или крупным элементом техпроцесса по отношению к его конечной цели, а ошибка исправляется вышестоящим руководителем по типу указаний «как необходи­мо сделать правильно» (рабочие строительных специальностей, ремонтный персонал).

Класс 3.1- ответственность за весь технологический процесс или деятельность, а ошибка исправляется всем коллективом, группой, бригадой (диспетчерский персонал, мастера, бригадиры, начальники цехов основного производства), за исключением слу­чаев, когда ошибка может привести к перечисленным ниже последствиям.

Класс 3.2 - ответственность за качество продукции, производимой всем струк­турным подразделением или повышенная ответственность за результат собственной ошибки, если она может привести к остановке технологического процесса, поломке до­рогостоящего или уникального оборудования, либо к возникновению опасности для жизни других людей (водители, перевозящие пассажиров автотранспортных средств, пилоты пассажирских самолетов, машинисты локомотивов, капитаны судов, руководи­тели предприятий и организаций).

3.2. «Степень риска для собственной жизни». Мерой риска является вероят­ность наступления нежелательного события, которую с достаточной точностью можно выявить из статистических данных производственного травматизма на данном пред­приятии и аналогичных предприятиях отрасли.

Поэтому на данном рабочем месте анализируют наличие травмоопасных факто­ров, которые могут представлять опасность для жизни работающих и определяют воз­можную зону их влияния. Рекомендуется использовать материалы аттестации рабочих мест по условиям труда, которые предписывают составление такого перечня. Напри­мер, во временной методике проведения в электроэнергетике (сосуды и трубопроводы с давлением выше 5 атмосфер, маслонаполненные вводы высоковольтного оборудования на напряжение выше 1 000 В, сосуды, трубопроводы и арматура с температурой носи­теля выше 60 °С, и др.).

Показателем «степень риска для собственной жизни» характеризуют лишь те рабочие места, где существует прямая опасность, т. е. рабочая среда таит угрозу непо­средственно поражающей реакции (взрыв, удар, самовозгорание), в отличие от косвен­ной опасности, когда рабочая среда становится опасной при неправильном и непреду­смотрительном поведении работающего.

Наиболее часто встречающимися видами происшествий, приводящих к несчаст­ным случаям со смертельным исходом, являются: дорожно-транспортные проис­шествия, падение с высоты, падение, обрушение и обвалы предметов и материалов, воздействие движущихся и вращающихся частей, разлетающихся предметов и деталей. Наиболее частыми источниками травматизма являются автомобили, энергетическое оборудование, тракторы, металлорежущие станки.

Примеры профессий, работа в которых характеризуется повышенной степенью риска для собственной жизни:

- строительные специальности, в основном связанные с работой на высоте (плотники, монтажники лесов, монтажники металлоконструкций, машинисты кранов, каменщики, и ряд других); основным травмирующим фактором в этих профессиях является падение с высоты;

- водители всех видов транспортных средств: основной травмирующий фак­тор - нарушение правил дорожного движения, неисправность транспортного средства;

- профессии, связанные с обслуживанием энергетического оборудования и систем (электромонтеры, электрослесари и др.): травмирующий фактор - поражение электрическим током;

- основные профессии горнодобывающей промышленности (проходчики, взрывники, скреперисты, рабочие очистного забоя, и др.): травмирующий фактор -взрывы, разрушения, обвалы, выбросы газа, и т. п.;

- профессии металлургии и химического производства (литейщики, пла­вильщики, конверторщики, и др.): травмирующий фактор - взрывы и выбросы рас­плавов, воспламенения в результате нарушения технологического процесса.

Риск для собственной жизни связан не только с травмоопасностью, но может определяться и спецификой трудовой деятельности в определенных социально-экономических условиях в стране. Так, высокий риск для собственной жизни характе­рен для работников прокуратуры (прокуроры, помощники прокуроров, следователи) и других сотрудников правоохранительных органов.

3.3. «Ответственность за безопасность других лиц». При оценке напряженности необходимо учитывать лишь прямую, а не опосредованную ответственность (последняя распределяется на всех руководителей), то есть такую, которая вменяется
должностной инструкцией.

Как правило, это руководители первичных трудовых коллективов - мастера, бригадиры, отвечающие за правильную организацию работы в потенциально опасных условиях и следящие за выполнением инструкций по охране труда и технике безопас­ности; работники, чья ответственность исходит из самого характера работы - врачи не­которых специальностей (хирурги, реаниматологи, травматологи, воспитатели детских дошкольных учреждений, авиадиспетчеры) и лица, управляющие потенциально опас­ными машинами и механизмами, например, водители транспортных средств, пилоты пассажирских самолетов, машинисты локомотивов.

3.4. «Количество конфликтных производственных ситуаций за смену». Наличие
конфликтных ситуаций в производственной деятельности ряда профессий (сотрудники
всех звеньев прокуратуры, системы МВД, преподаватели и др.) существенно увеличи­
вают эмоциональную нагрузку и подлежат количественной оценке. Количество кон­
фликтных ситуаций учитывается на основании хронометражных наблюдений.

Конфликтные ситуации у педагогов встречаются в виде непосредственного взаимоотношения между педагогом и учащимися, а также участие в разрешении кон­фликтов, возникающих между учениками. Кроме того, могут возникать конфликты внутри педагогического коллектива с коллегами, руководством и в ряде случаев с ро­дителями учащихся.

У прокуроров и работников правоохранительных органов конфликты встреча­ются с клиентами в виде словесных угроз, угроз по телефону, письменно и при личном общении, а также оскорбления, угрозы физического насилия, физические атаки.

Пример. Наибольшее число конфликтных ситуаций в среднем за рабочую смену отмечено у работников правоохранительных органов: более 8 (класс 3.2), меньшее ко­личество у преподавателей - от 4 до 8 (класс 3.1), у помощников следователей прокура­туры от 1 до 3 (класс 2), у работников канцелярии прокуратуры - отсутствуют (класс 1).

4. Монотонность нагрузок

4.1 и 4.2. «Число элементов (приемов), необходимых для реализации простого задания или многократно повторяющихся операций» и «Продолжительность (с) вы­полнения простых производственных заданий или повторяющихся операций» - чем меньше число выполняемых приемов и чем короче время, тем, соответственно, выше монотонность нагрузок.

Данные показатели наиболее выражены при конвейерном труде (класс 3.1—3.2). Эти показатели характеризуют так называемую «моторную» монотонию.

Необходимым условием для отнесения операций и действий к монотонным яв­ляется не только их частая повторяемость и малое количество приемов, что может на­блюдаться и при других работах, но и их однообразие и, самое главное, их низкая ин­формационная содержательность, когда действия и операции производятся автомати­чески и практически не требуют пристального внимания, переработки информации и принятия решений, т. е. практически не задействуют «интеллектуальные» функции.

К таким работам относятся практически все профессии поточно-конвейерного производства - монтажники, слесари-сборщики, регулировщики радиоаппаратуры, и другие работы того же характера - штамповка, упаковка, наклейка ярлыков, нанесение маркировочных знаков. В отличие от этих существуют работы, которые по внешним признакам относятся к монотонным, но, по сути, таковыми не являются, например, ра­бота оператора-программиста ПЭВМ, когда короткие, однообразные и часто повто­ряющиеся действия имеют значительный информационный компонент и вызывают со­стояние не монотонии, а нервно-эмоционального напряжения.

4.3. «Время активных действий (в % к продолжительности смены)». Наблюде­
ние за ходом технологического процесса не относится к «активным действиям». Чем
меньше время выполнения активных действий и больше время наблюдения за ходом
производственного процесса, тем, соответственно выше монотонность нагрузок.

Наиболее высокая монотонность по этому показателю характерна для операто­ров пультов управления химических производств (класс 3.1—3.2).

4.4. «Монотонность производственной обстановки (время пассивного наблюде­
ния за ходом техпроцесса, в % от времени смены)»
- чем больше время пассивного на­
блюдения за ходом технологического процесса, тем более монотонной является работа.

Данный показатель, также как и предыдущий, наиболее выражен у операторских видов труда, работающих в режиме ожидания (операторы пультов управления химиче­ских производств, электростанций и др.) - класс 3.2.

5. Резким работы

5.1 «Фактическая продолжительность рабочего дня» - выделен в самостоя­тельную рубрику, так как независимо от числа смен и ритма работы фактическая про­должительность рабочего дня колеблется от 6—8 ч (телефонисты, телеграфисты и т. п.) до 12 ч и более (руководители промышленных предприятий). У целого ряда профессий продолжительность смены составляет 12 ч и более (врачи, медсестры и т. п.). Чем про­должительнее работа по времени, тем больше суммарная за смену нагрузка, и, соответ­ственно, выше напряженность труда.

5.2. «Сменность работы» определяется на основании внутрипроизводственных документов, регламентирующих распорядок труда на данном предприятии, организа­ции. Самый высокий класс 3.2 характеризуется нерегулярной сменностью с работой в ночное время (медсестры, врачи и др.).

5.3. «Наличие регламентированных перерывов и их продолжительность (без учета обеденного перерыва)». К регламентированным перерывам следует относить только те перерывы, которые введены в регламент рабочего времени на основании официальных внутрипроизводственных документов, таких как коллективный договор, приказ директора предприятия или организации, либо на основании государственных документов - санитарных норм и правил, отраслевых правил по охране труда и других.

Недостаточная продолжительность или отсутствие регламентированных пере­рывов усугубляет напряженность труда, поскольку отсутствует элемент кратковремен­ной защиты временем от воздействия факторов трудового процесса и производствен­ной среды.

Существующие режимы работ авиадиспетчеров, врачей, медицинских сестер и т. д. характеризуются отсутствием регламентированных перерывов (класс 3.2), в от­личие от мастеров и руководителей промышленных предприятий, у которых перерывы не регламентированы и непродолжительны (класс 3.1). В то же время, перерывы имеют место, но они недостаточной продолжительности у конструкторов, научных работни­ков, телеграфистов, телефонистов и др. (2 класс).

6. Общая оценка напряженности трудового процесса

6.1. Независимо от профессиональной принадлежности (профессии) учитывают­ся все 23 показателя, перечисленные в табл. 18. Не допускается выборочный учет ка­ких-либо отдельно взятых показателей для общей оценки напряженности труда.

6.2. По каждому из 23 показателей в отдельности определяется свой класс усло­вий труда. В том случае, если по характеру или особенностям профессиональной дея­тельности какой-либо показатель не представлен (например, отсутствует работа с экра­ном видеотерминала или оптическими приборами), то по данному показателю ставится 1 класс (оптимальный) - напряженность труда легкой степени.

6.3. При окончательной оценке напряженности труда.

 

6.3.1. «Оптимальный» (1 класс) устанавливается в случаях, когда 17 и более по­казателей имеют оценку 1 класса, а остальные относятся ко 2 классу. При этом отсутст­вуют показатели, относящиеся к 3 (вредному) классу.

6.3.2. «Допустимый» (2 класс) устанавливается в следующих случаях:

- когда 6 и более показателей отнесены ко 2 классу, а остальные - к 1 классу;

- когда от 1 до 5 показателей отнесены к 3.1 и/или 3.2 степеням вредности, а остальные показатели имеют оценку 1-го и/или 2-го классов.

6.3.3. «Вредный» (3) класс устанавливается в случаях, когда 6 или более показа­
телей отнесены к третьему классу (обязательное условие).

При соблюдении этого условия труд напряженный 1-й степени (3.1):

- когда 6 показателей имеют оценку только класса 3.1, а оставшиеся показа­тели относятся к 1 и/или 2 классам;

- когда от 3 до 5 показателей относятся к классу 3.1, а от 1 до 3 показателей отнесены к классу 3.2.

Труд напряженный 2-й степени (3.2):

- когда 6 показателей отнесены к классу 3.2;

- когда более 6 показателей отнесены классу 3.1;

- когда от 1 до 5 показателей отнесены к классу 3.1, а от 4 до 5 показателей -к классу 3.2;

- когда 6 показателей отнесены к классу 3.1 и имеются от 1 до 5 показателей класса 3.2.

6.4. В тех случаях, когда более 6 показателей имеют оценку 3.2, напряженность
трудового процесса оценивается на одну степень выше - класс 3.3.


Пример расчета напряженности трудового процесса

Протокол
оценки условий труда по показателям тяжести трудового процесса

(рекомендуемый)

Ф., И., О._______________________ Сидоров В. Г.____________ пол м____________________

Профессия:______________________ мастер__________________________________________

Предприятие:_______________ Машиностроительный завод______________________________

Краткое описание выполняемой работы:________________ Осуществляет контроль за работой

______________ бригады, контролирует качество работы, обеспечивает наличие материалов

______________ и контролирует эффективность использования оборудования, осуществляет

______________ работу на станках и с измерительными приборами, проводит работу_______

______________ с технической документацией, составляет отчеты и т. п._________________

 

Показатели

Класс условий труда

1

2

3

4

5

6

 

1

2

3.1

3.2

3.3

1. Интеллектуальные нагрузки

1.1

Содержание работы

 

 

+

 

 

1.2

Восприятие сигналов и их оценка

 

 

+

 

 

1.3

Распределение функции по степени сложности задания

 

 

+

 

 

1.4

Характер выполняемой работы

 

 

+

 

 

2. Сенсорные нагрузки

2.1

Длительность сосредоточенного наблюдения

 

+

 

 

 

2.2

Плотность сигналов за 1 час работы

+

 

 

 

 

2.3

Число объектов одновременного наблюдения

+

 

 

 

 

2.4

Размер объекта различения при длительности сосредоточенного внимания

 

+

 

 

 

2.5

Работа с оптическими приборами при длитель­ности сосредоточенного наблюдения

+

 

 

 

 

2.6

Наблюдение за экраном видеотерминала

+

 

 

 

 

2.7

Нагрузка на слуховой анализатор

 

 

+

 

 

2.8

Нагрузка на голосовой аппарат

+

 

 

 

 

3. Эмоциональные нагрузки

3.1

Степень ответственности за результат соб­ственной деятельности. Значимость ошибки.

 

 

 

+

 

3.2

Степень риска для собственной жизни

+

 

 

 

 

3.3

Ответственность за безопасность других лиц

+

 

 

 

 

3.4

Количество конфликтных производственных ситуаций за смену

 

 

+

 

 

4. Монотонность нагрузок

4.1

Число элементов, необходимых для реализации простого задания или многократно повторяю­щихся операций

 

+

 

 

 

4.2

Продолжительность выполнения простых зада­ний или повторяющихся операций

+

 

 

 

 

4.3

Время активных действий

+

 

 

 

 

4.4

Монотонность производственной обстановки

+

 

 

 

 

5. Режим работы

1

2

3

4

5

6

5.1

Фактическая продолжительность рабочего дня

 

+

 

 

 

5.2

Сменность работы

 

 

+

 

 

5.3

Наличие регламентированных перерывов и их продолжительность

 

 

+

 

 

Количество показателей в каждом классе

10

4

8

1

 

Общая оценка напряженности труда

 

 

 

+

 
                         

Примечание: более 6 показателей относятся к классу 3.1, поэтому общая оценка напряженности труда мастера соответствует классу 3.2 (см. п. 6.3.3).


Приложение 17

Примеры
 оценки условий труда по показателям микроклимата

1. Оценка микроклимата при работе в нагревающей среде
 (рабочее место сталевара)

На основе ознакомления с технологическим процессом выявлено, что в течение рабочей смены сталевар находится у печи как при открытых заслонках, так и при за­крытых (условно рабочее место обозначается соответственно 1 и 2).

Замеряются параметры микроклимата на разном уровне от пола на рабочем мес­те 1 в начале рабочей смены, ее середине и перед окончанием смены и вносят в прото­кол (табл. П.17.1).

На основании полученных данных делается вывод, что микроклимат на рабочем месте 1 является нагревающим, поскольку температура воздуха и тепловое излучение превышают верхнюю границу допустимых значений применительно к среднесменной величине категории работ Па.

Следовательно, класс условий труда в этом случае следует оценивать как по ин­тегральному показателю термической нагрузки (ТНС-индекс), так и по интенсивности теплового облучения.

Для этого измеряется температура смоченного термометра (аспирационным термометром) и температура внутри зачерненного шара на высоте 0,1 и 1,5 м от пола перед началом рабочей смены, в середине и перед ее окончанием.

Рассчитываются среднесменные величины tсм и tш (23,5 °С и 46,0 °С) и определя­ется среднесменное значение ТНС-индекса:

ТНС = 0,7 ∙ 23,5 + 0,3 ∙ 46,0 = 30,25 °С

Фиксируется продолжительность пребывания на рабочем месте 1 в течение ра­бочей смены. В данном конкретном случае она составляет 2 ч.

Измеряются параметры микроклимата на рабочем месте 2 (у печи при закрытых заслонках) (см. протокол). Данные указывают, что среднесменная температура воздуха (24,8 °С) превышает верхнюю границу допустимой для холодного периода года (24,0 °С) применительно к категории работ Па. Нормативную величину превышает и интенсив­ность теплового облучения, составляющая 350 Вт/м (нормативная величина при отсут­ствии видимого излучения составляет 100 Вт/м согласно СанПиН 2.2.4.548—96).

Следовательно, и в этом случае для оценки класса условий труда по микрокли­мату следует использовать интегральный показатель (ТНС-индекс). Согласно расчету (аналогично описанному выше) его величина составляет 25,66 °С (см. протокол). Про­должительность пребывания на рабочем месте составляет 4 ч.

При расчете среднесменных значений ТНС-индекса учитывается и его величина в местах отдыха. При этом фиксируется и продолжительность отдыха. В данном случае она составляет 1 ч за рабочую смену, ТНС-индекс равен 20,8 °С.

Рассчитывается среднесменная величина ТНС-индекса (см. протокол). По вы­численному значению определяется класс условий труда по показателям микроклимата (табл. 5 настоящего руководства), он соответствует классу 3.3.

Поскольку на рабочем месте сталевара имеет место тепловое облучение, поэто­му следует установить класс и по данному показателю.

Для этого рассчитывается среднесменная величина теплового облучения (ТО): ТО = (1 500 Вт/м2 ∙ 2 ч + 350 Вт/м2 ∙ 4ч + 0,0 ∙ 1ч) / 7 = 628 Вт/м2

В соответствии с табл. 6 руководства эта интенсивность теплового облучения характеризует класс условий труда 3.1.

Общая оценка условий труда сталевара по параметрам микроклимата выносится по наибольшему показателю, т. е. соответствует степени 3.3.


 

Таблица П.17.1

 Протокол
оценки микроклиматических параметров при работе сталевара

 

 

 

Параметры
 микроклимата

Рабочее место суммарная продолжительность пребывания, ч

1/2

2/4

3/1

в начале рабочей смены в середине рабочей смены перед окончанием рабочей смены среднесменная величина в начале рабочей смены в середине рабочей смены перед окончанием рабочей смены среднесменная величина в начале рабочей смены в середине рабочей смены перед окончанием рабочей смены среднесменная величина
Температу­ра воздуха, 32,0 33,0 34,0 33,0 24,0 25,0 25,5 24,8

23,0 ± 1

Температу­ра смочен­ного тер­мометра, °С 23,0 23,5 24,0 23,5 21,0 21,5 21,5 21,3

19,0 ±0,5

Влажность воздуха, % 50 54 55 53 52 55 50 52,0

55 ± 5,0

Скорость движения воздуха, м/с* 0,20 0,15 0,20 0,18 0,15 0,30 0,25 0,23

 

Тепловое облучение, Вт/м2 * 1500 1500 1500 1500 350 350 350 350

 

Температу­ра внутри черного шара, °С* 45 46 47 46 35 36 36,5 35,8

25 ± 0,5

ТНС-индекс, °С*       30,25       25,66       20,8

ТНС(среднесменный) =(30,25∙2 + 25,66∙4 + 20,8∙1)/ 7 - 26,3 °С

* средняя из величин, измеренных на разном уровне от пола (СанПиН 2.24.548—96)

2. Оценка микроклимата и установление класса условий труда
по показателям микроклимата при работе в производственном помещении
с охлаждающим микроклиматом

Учет скорости движения воздуха

Среднесменная температура воздуха на рабочем месте составляет 15 °С, а ско­рость движения воздуха 0,6 м/с. При этом работник выполняет работу категории 1б.

Исходя из охлаждающего действия ветра, эквивалентная температура воздуха составит: 15 - (0,6 - 0,1) 0,2 = 14 °С, т. е. при скорости движения воздуха 0,6 м/с и температуре воздуха 15 °С класс условий труда для работника, выполняющего работу категории 16, следует оценить степенью 3.3, в то время как при оптимальной подвижности воздуха на рабочем месте (< 0,1 м/с) - степень 3.2 согласно табл. 7 руководства.


 

Пример определения класса условий труда
 при работе в производственном помещении с охлаждающим микроклиматом.

Необходимо определить класс условий труда оператора в холодный период года при выполнении им работы категории 1б. При этом зафиксировано, что в течение рабо­чей смены трудовая деятельность оператора осуществляется в трех помещениях.

С целью решения поставленной задачи в каждом помещении на рабочем месте оператора определяют параметры микроклимата и сравнивают с нормативами по СанПиН 2.2.4.548—96 (заполняют протокол - табл. П. 17.2). Количество замеров пара­метров микроклимата на каждом рабочем месте в течение рабочей смены зависит от особенностей технологического процесса. При отсутствии источников поступления те­пла или холода достаточным является их однократное измерение (в середине рабочей смены).

Фиксируется продолжительность пребывания на рабочих местах № 1, 2, 3 в те­чение рабочей смены. Определено, что четыре часа оператор работает в оптимальном микроклимате (см. СанПиН 2.2.4.548—96), т. е. класс условий труда на этом рабочем месте оценивается степенью 3.1. На рабочем месте № 2 (согласно табл. 7 настоящего руководства) эквивалентная температура с учетом превышения скорости ветра на 0,2 м/с составляет 14,6 °С (15,0 - 0,2 ∙ 0,2 = 14,6 °С), т.е. соответствует 3.3. степени вредности условий труда; а на рабочем месте № 3 - класс условий труда 3.4 (12,0-0,2-0,4=11,2°С).

Таблица П. 17.2

Протокол
 оценки микроклиматических параметров при работе оператора

 

 

Параметры
микроклимата*

Рабочее место /продолжительность пребывания
 в течение рабочей смены, ч

1/3 2/4 3/1
Температура воздуха, °С 22,0 15,0 12,0
Относительная влажность, % 50 55 60
Скорость движения воздуха, м/с 0,1 0,3 0,5

* средние величины, из определенных на разных уровнях от пола помещения.

Среднесменную величину класса условий труда можно определить двояким путем, на основании:

- среднесменной эквивалентной температуры, рассчитанной следующим об­разом: (22,0 ∙ 3 + 14,6 ∙ 4 + 11,2 ∙ 1)/8 = 16,9 °С. Поскольку величина 16,9 °С меньше нижней границы, характеризующей класс 3.1, то данные микроклиматические усло­вия следует оценить классом вредности 3.2;

- классов условий труда, проранжированных в соответствии с табл. П. 17.3.

 

Таблица П. 17.3

Ранжирование классов условий труда по показателям микроклимата
 для определения среднесменной величины класса условий труда

 

Класс условий труда Шкала 1 Шкала 2
Оптимальный 1 1
Допустимый 2 2
Вредный 3.1 3
Вредный 3.2 4
Вредный 3.3 5
Вредный 3.4 6

Для этого определяется среднесменная величина класса условий труда по шка­ле 2, которая составляет 3,6 [(1∙3 + 5∙4 + 6∙1)/8 = 3,6], что позволяет, округлив эту величину в большую сторону, охарактеризовать класс условий труда степенью 3.2 (шкала 1).

 

3. Оценка микроклимата при работе на открытой территории

Для установления класса условий труда по параметрам микроклимата при рабо­те на открытой территории необходимо собрать следующую информацию:

- температуру воздуха, °С;

- скорость ветра, м/с;

- категорию выполняемой работы;

- наличие или отсутствие регламентированных перерывов в работе.
Возможны следующие подходы к оценке класса условий труда на открытой тер­
ритории.

1) Необходимо определить класс условий труда применительно к конкретной рабочей смене при работе в климатическом регионе III.

Для этого измеряется температура воздуха в начале рабочей смены, в середине и перед ее окончанием (см. протокол - табл. П. 17.4 настоящего приложения) на высоте 1,5 м от поверхности земли или рабочей площадки. Причем вся территория, на которой осуществляется трудовая деятельность, является единым рабочим местом.

Таблица П. 17.4

Протокол оценки класса условий труда при работе
 на открытой территории в III-м климатическом регионе

Дата. 30.01.03

Параметры микроклимата В начале рабочей смены В середине рабочей смены В конце рабочей смены Средне-сменные Дополнительные условия
Температура воздуха, ˚С -12 -10 -11 -11 1)  Категория выполняемой работы: IIа—IIб 2)  Перерывы на обогрев не регламентированы

Заключение. Класс условий труда по показателям микроклимата при работе на открытой тер­ритории 3.3.

Исходя из среднесменной температуры воздуха и категории работ IIа—IIб (см. протокол), класс условий труда составляет 3.3 (см. табл. 9 настоящего руководства).

2) При наличии мониторинга класс условий труда может быть определен за каж­дый период времени (неделя, месяц, месяцы).

3) При отсутствии мониторинга для определения класса условий труда могут быть использованы данные метеослужбы.

4) Для ориентировочного определения класса условий труда могут использо­ваться многолетние среднемесячные величины температуры воздуха, в частности пред­ставленные в СНиП «Строительная климатология и геофизика».

Например, в г. Москве (III климатический регион) средняя температура воздуха декабря, января и февраля составляет соответственно -7,6; -10,2; -9,6 °С, т. е. средней за три зимних месяца является температура воздуха, равная -9,1 °С. Это означает, что для работ категории IIа—IIб класс условий труда работающих в этот период на откры­той территории следует оценить классом 3.3 при отсутствии регламентированных пе­рерывов и классом 3.2 - при наличии таковых (табл. 9 руководства).

Оценка условий труда периодически работающих на открытой территории при данном подходе может оказаться неадекватной, так как в течение определенного пе­риода температура воздуха может оказаться существенно ниже или выше ее средне-сменных величин.

5) Для оценки микроклимата на открытой территории могут быть также использованы величины температуры воздуха, приведенные в табл. 10 и 11 руководства (для
неотапливаемых помещений), если известны конкретные величины скорости ветра и
температуры воздуха. Для этого в измеренную величину температуры вводится темпе­
ратурная поправка на охлаждающее действие ветра, которая составляет 2,5 °С на каж­
дый 1 м/с.

Например, на рабочем месте человека, выполняющего работу категории Па—Нб в IA климатическом регионе зафиксировано, что температура воздуха составляет 20 °С, а скорость ветра - 10 м/с, при этом регламентируемые перерывы отсутствуют. С учетом температурной поправки эквивалентная температура воздуха составит:

-20°С + (-2,5 ∙ 10) = -45°С

Согласно табл. 11 руководства эта величина характеризует условия труда по по­казателям микроклимата как вредные третьей степени (класс 3.3).

4. Пример оценки условий труда по показателям микроклимата
для работников, подвергающихся в течение смены воздействию как нагревающего,
так и охлаждающего микроклимата

Для данного случая необходимо определить класс условий труда в различных зонах занятости работника (например, на открытой территории и в производственном помещении) с учетом продолжительности пребывания на каждом рабочем месте. Рас­считываются среднесменные значения класса условий труда.

Например, на открытой территории работник, выполняющий работу категории Па—Пб, находится в течение трех часов при температуре воздуха —18 °С (II климатиче­ский регион), а в течение пяти часов он выполняет работу категории 16 в производст­венном помещении при температуре воздуха 19 °С и его подвижности < 0,1 м/с.

Согласно СанПиН 2.2.4.548—96 микроклимат на рабочем месте в производст­венном помещении является допустимым для холодного периода года (класс 2).

При работе на открытой территории при отсутствии регламентированных перерывов класс условий труда соответствует степени 3.3 (согласно табл. 9 руководства).

Средневзвешенный во времени класс условий труда, исходя из их ранжирования (1—6), определяется следующим образом:

(2×5+ 5×3)/8 = 3,125

Так как полученное значение больше чем 3.1, то средний за смену класс условий труда в данном случае 3.2.


Приложение 18

(справочное)

Термины и определения

Аналогичные рабочие места - рабочие места, которые характеризуются сово­купностью признаков:

- выполнение одних и тех же профессиональных обязанностей при ведении единого технологического процесса;

- использование однотипного оборудования, инструментов, приспособле­ний, материалов и сырья;

- работа в одном помещении или на открытом воздухе, где используются единые системы вентиляции, кондиционирования воздуха, освещения;

- одинаковое расположение объектов на рабочем месте.

Аттестация рабочих мест по условиям труда - оценка рабочих мест на соот­ветствие государственным нормативным требованиям гигиены и охраны труда, обеспе­чивающим безопасные условия трудовой деятельности («Об основах охраны труда в Российской Федерации» № 181 -ФЗ).

Безопасность - отсутствие недопустимого риска, связанного с возможностью нанесения ущерба (ГОСТ Р 1.0—92).

Безопасные условия труда - условия труда, при которых воздействие на рабо­тающих вредных и опасных производственных факторов исключено или их уровни не превышают установленные нормативы («Об основах охраны труда в Российской Феде­рации» № 181 -ФЗ).

Ведущий фактор - фактор, специфическое действие которого на организм ра­ботника проявляется в наибольшей мере при комбинированном или сочетанном дейст­вии ряда факторов.

Вредные условия труда - условия труда, характеризующиеся наличием вредных производственных факторов, оказывающих неблагоприятное воздействие на организм работающего и/или его потомство.

Вредный производственный фактор - производственный фактор, воздействие которого на работника может привести к его заболеванию («Об основах охраны труда в Российской Федерации» № 181-ФЗ).

Гигиенические критерии оценки условий труда - показатели, позволяющие оце­нить степень отклонений параметров производственной среды и трудового процесса от действующих гигиенических нормативов.

Гигиена труда - профилактическая медицина, изучающая условия и характер труда, их влияние на здоровье и функциональное состояние человека и разрабатываю­щая научные основы и практические меры, направленные на профилактику вредного и опасного действия факторов рабочей среды и трудового процесса на работников.

Гигиенические нормативы условий труда (ПДК, ПДУ) - уровни факторов рабо­чей среды, которые при ежедневной (кроме выходных дней) работе в течение 8 ч, но не более 40 ч в неделю, в течение всего рабочего стажа не должны вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами ис­следований в процессе работы или в отдаленные сроки жизни настоящего и последую­щего поколений. Соблюдение гигиенических нормативов не исключает нарушение здоровья у лиц с повышенной чувствительностью.

Защита временем - уменьшение вредного действия неблагоприятных факторов рабочей среды и трудового процесса на работников за счет снижения времени их действия: введение внутрисменных перерывов, сокращение рабочего дня, увеличение про­должительности отпуска, ограничение стажа работы в данных условиях.

Здоровье - это состояние полного физического, духовного и социального благо­получия, а не только отсутствие болезней или физических дефектов (преамбула Устава Всемирной Организации Здравоохранения).

Напряженность труда - характеристика трудового процесса, отражающая на­грузку преимущественно на центральную нервную систему, органы чувств, эмоцио­нальную сферу работника. К факторам, характеризующим напряженность труда, отно­сятся интеллектуальные, сенсорные, эмоциональные нагрузки, степень монотонности нагрузок, режим работы

Опасный производственный фактор:

• производственный фактор, воздействие которого на работника может привести к его травме («Об основах охраны труда в Российской Федерации» № 181 -ФЗ);

• фактор среды или трудового процесса, который может быть причиной ост­рого заболевания или внезапного резкого ухудшения здоровья, смерти.

Оптимальные условия труда - предпосылки для поддержания высокого уровня работоспособности.

Охрана труда - система обеспечения безопасности жизни и здоровья работни­ков в процессе трудовой деятельности, включающая правовые, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия («Об основах охраны труда в Российской Федерации». Федераль­ный закон от 17.07.99 № 181-ФЗ).

Производственно-обусловленная заболеваемость - заболеваемость (стандарти­зованная по возрасту) общими[**] заболеваниями различной этиологии (преимущественно полиэтиологичных), имеющая тенденцию к повышению числа случаев по мере увели­чения стажа работы во вредных или опасных условиях труда и превышающая таковую в группах, не контактирующих с вредными факторами.

Профессиональное заболевание - хроническое или острое заболевание работни­ка, являющееся результатом воздействия на него вредного (вредных) производственно­го (производственных) фактора (факторов) и повлекшее временную или стойкую утра­ту им профессиональной трудоспособности («Об обязательном социальном страхова­нии от несчастных случаев на производстве и профессиональных заболеваний». Феде­ральный закон от 24.07.98 № 125-ФЗ).

Профессиональная заболеваемость - показатель числа вновь выявленных в те­чение года больных с профессиональными заболеваниями и отравлениями, рассчитан­ный на 100, 1 000, 10 000, 100 000 работников.

Профессиональный риск - вероятность повреждения (утраты) здоровья или смерти, связанная с исполнением обязанностей по трудовому договору (контракту) и в иных установленных законом случаях. Оценка профессионального риска проводится с учетом величины экспозиции, показателей функционального состояния, состояния здо­ровья и утраты трудоспособности работников.

Работоспособность - состояние человека, определяемое возможностью физио­логических и психических функций организма, которое характеризует его способность выполнять определенное количество работы заданного качества за требуемый интервал времени.

Рабочий день (смена) - установленная законодательством продолжительность (в часах) работы в течение суток.

Рабочая зона - пространство высотой до 2 м над уровнем пола или площадки, на котором находятся места постоянного или временного (непостоянного) пребывания ра­ботников. На постоянном рабочем месте работник находится большую часть своего ра­бочего времени (более 50 % или более 2 ч непрерьтно). Если при этом работа осущест­вляется в разных пунктах рабочей зоны, постоянным рабочим местом является вся ра­бочая зона.

Рабочее место - место, в котором работник должен находиться или в которое ему необходимо прибыть в связи с его работой и которое прямо или косвенно находит­ся под контролем работодателя («Об основах охраны труда в Российской Федерации» № 181-ФЗ).

Рабочее место постоянное - место, на котором работающий находится боль­шую часть своего рабочего времени (более 50 % или более 2 ч непрерывно). Если при этом работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом считается вся рабочая зона (ГОСТ 12.1.005—88).

Трудоспособность - состояние человека, при котором совокупность физических, умственных и эмоциональных возможностей позволяют выполнять работу определен­ного объема и качества (Руководство по врачебной и трудовой экспертизе).

Тяжесть труда - характеристика трудового процесса, отражающая преимуще­ственную нагрузку на опорно-двигательный аппарат и функциональные системы орга­низма (сердечно-сосудистую, дыхательную и др.), обеспечивающие его деятельность.

Условия труда - совокупность факторов производственной среды и трудового процесса, оказывающих влияние на работоспособность и здоровье человека («Об осно­вах охраны труда в Российской Федерации» № 181 -ФЗ).

Характерный компонент смеси - компонент, определяющий химический состав смеси.

Экспозиция - количественная характеристика интенсивности и продолжительно­сти действия фактора рабочей среды.

 


· В терминологии МОТ - опасный фактор рабочей среды.

· В классификации в основном использована качественная характеристика изменений в организме работников, которая будет дополняться количественными показателями по мере накопления информации о рисках нарушения здоровья.

[*] Справку о характере биологического действия вредных веществ можно получить в органах и учреждениях Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

[†] В соответствии с СанПиН 2.2.0.555–96 «Гигиенические требования к условиям труда женщин», Методическими рекомендациями №11–8/240–02 «Гигиеническая оценка вредных производственных факторов и производственных процессов, опасных для репродуктивного здоровья человека»; Detailed review document on classification systems for reproductive toxicity in OECD member countries / OECD series on testing and assessment № 15. – Paris: OECD. – 1999. – 18 p.

 

· Утверждены Минздравом России (с 1997 г.), Госкомсанэпиднадзора России (1992—1996 гг.), Минздравом СССР (до 1992 г.) за исключением отдельных документов, специально обозначенных в данной графе

· Устанавливается специалистами органов и учреждений Федеральной службы по надзору в сфере заши­ты прав потребителей и благополучия человека

· В соответствии с ГОСТ 12.1.005–88 ССБТ «Общие санитарно-гигиенические требования к воздуху рабочей зоны».

· Например, программа расчета среднесменных концентраций, разработанная ГУ НИИ медицины труда РАМН

· Определитель бактерий Берджи. Москва, Мир, 1997, 2 т, 780 с.

·· Де Саттон, А Фоттергилл, М. Ринальди Определитель патогенных и условно патогенных грибов. Москва, Мир, 2001, 468 с.

[‡] Разработаны творческим коллективом: О. А. Кочетков, А. В. Симаков (руководители), Ю. В. Абрамов, А .Г. Цовьянов (ГНЦ-Институт биофизики), В. А. Кутьков (РНЦ «Курчатовский институт»), В. Я. Голиков, А. А. Горский, Е. П. Ермолина (Российская медицинская академия последипломного об­разования (РМАПО), Е. Б. Антипин (Федеральное Управление «Медбиоэкстрем»), И. В. Баранов, В. И. Гришмановский, А. П. Панфилов (Департамент безопасности и чрезвычайных ситуаций (ДБЧС) Минатома России), В. А. Архипов (Объединенный институт ядерных исследований (ОИЯИ).

[§] В качестве примеров приведены результаты оценки некоторых профессиональных групп исполни­тельского, управленческого, операторского и творческого видов труда.

** В скобках указаны классы условий труда в соответствии с настоящим руководством.

 

[**] Не относящиеся к профессиональным.


Дата добавления: 2019-07-15; просмотров: 290; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!