Реверсивные счетчики с последовательным переносом.



Делители частоты с фиксированным и устанавливаемым коэффициентами переноса.

Аналого-цифровой преобразователь. Структура и параметры.

Микропроцессор. Основные элементы, их назначение и взаимодействие.

Внешние сигналы микропроцессора.

12. Счетчики с параллельным переносом. *

Параметры логических элементов.

14. Аккумулятор и регистр признаков микропроцессора. *

Оперативные запоминающие устройства статического типа.

Схемы, в которых в качестве запоминающей ячейки используется параллельный регистр называются статическим оперативным запоминающим устройством - статическим ОЗУ(RAM - random access memory - память с произвольным доступом), т.к. информация в нем сохраняется все время, пока к микросхеме ОЗУ подключено питание. В отличие от статической ОЗУ в микросхемах динамического ОЗУ постоянно требуется регенерировать их содержимое, иначе информация будет испорчена.В современной компьютерной системе используется память различного типа: статическая (SRAM), динамическая (DRAM), постоянная память, перепрограммируемая постоянная память и некоторые другие виды памяти.

 

Но, основной памятью компьютера, определяющей всю его работу, является оперативная память - ОЗУ. Главное требование к памяти:

максимальный объем

максимальное быстродействие

максимальная надежность

Первоначально оперативная память была статического типа. Ячейка ОЗУ строилась на базе транзисторного каскада, который мог содержать до 10 транзисторов. Быстродействие у статической памяти было высокое, поскольку время переключения транзисторов из одного состояния в другое очень мало. Однако, такое количество транзисторов в расчете на одну ячейку памяти занимало довольно большой физический объем, т.е., "втиснуть" большой объем памяти в малое физическое пространство оказалось невозможным. Второй неприятной особенностью статического массива памяти стал тот факт, что транзисторы потребляют относительно большой уровень энергии, что также накладывает свои ограничения на максимальный объем памяти.Указанных выше недостатков лишена динамическая память, ячейка которой состоит из конденсатора и управляющего транзистора. Когда конденсатор заряжен - это одно логическое состояние, когда разряжен - другое. Двух состояний вполне достаточно, поскольку компьютерная система работает с двоичным кодом (сигнал либо есть - логическая "1", либо сигнала нет - логический "0"). Конденсатор и транзистор занимают места гораздо меньше, чем несколько транзисторов. Энергопотребление такого тандема тоже гораздо ниже. Но, с быстродействием возникают проблемы. Тут причин несколько:

разряд/заряд конденсатора - процесс более длительный, чем простое переключение транзистора;

у конденсатора существует ток утечки, который тем больше (в относительных единицах), чем меньше емкость конденсатора. Поэтому, для нормальной работы динамической памяти требуется периодическая регенерация памяти (подзаряд конденсаторов), что усложняет электрическую схему работы динамической памяти.

Но, поскольку, основополагающим требованием для оперативной памяти является ее объем (современные модули памяти имеют объем в несколько Гб), то динамическая память оказалась предпочтительней, несмотря на то, что она работает медленнее и имеет сложную схему управляющего контроллера.

Основой ячейки памяти в ЗУ статического типа является триггер. В качестве базовых элементов для реализации триггера могут использоваться как биполярные транзисторы, так и полевые. Однако первые не нашли широкого применения в силу большой потребляемой мощности построенных на их основе микросхем памяти. Поэтому оптимальным является использование полевых транзисторов. На рис.1 представлен триггер на МОП-транзисторах с индуцируемым p-каналом. Для отпирания такого транзистора напряжение на его затворе относительно истока должно быть меньше нуля:Uзи<0.

Рис. 1 - Принципиальная схема ячейки ОЗУ статического типа.

В микросхемах ОЗУ присутствуют две операции: операция записи и операция чтения. Для записи и чтения информации можно использовать различные шины данных (как это делается в сигнальных процессорах), но чаще используется одна и та же шина данных. Это позволяет экономить внешние выводы микросхем, подключаемых к этой шине и легко осуществлять коммутацию сигналов между различными устройствами.

Структурная схема статического ОЗУ приведена на рисунке 2. Вход и выход ОЗУ в этой схеме объединены при помощи шинного формирователя . Естественно, что схемы реальных ОЗУ будут отличаться от приведенной на этом рисунке. Тем не менее, приведенная схема позволяет понять как работает реальное ОЗУ. Условно-графическое обозначение ОЗУ на принципиальных схемах приведено на рисунке 3.

Рис. 2 - Структурная схема ОЗУ (RAM)

Сигнал записи WR позволяет записать логические уровни, присутствующие на информационных входах во внутреннюю ячейку ОЗУ (RAM). Сигнал чтения RD позволяет выдать содержимое внутренней ячейки памяти на информационные выходы микросхемы. В приведенной на рисунке 1 схеме невозможно одновременно производить операцию записи и чтения, но обычно это и не нужно.

Конкретная ячейка ОЗУ выбирается при помощи двоичного кода - адреса ячейки. Объем памяти ОЗУ (RAM) зависит от количества ячеек, содержащихся в ней или, что то же самое, от количества адресных проводов. Количество ячеек в ОЗУ можно определить по количеству адресных проводов, возводя 2 в степень, равную количеству адресных выводов в микросхеме:


Дата добавления: 2019-07-15; просмотров: 207; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!