СПОСОБЫ ЗАДАНИЯ НАЧАЛЬНОЙ РАБОЧЕЙ ТОЧКИ В УСИЛИТЕЛЬНЫХ КАСКАДАХ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ: СХЕМЫ С ФИКСИРОВАННЫМ ТОКОМ БАЗЫ И С ФИКСИРОВАННЫМ НАПРЯЖЕНИЕМ БАЗА–ЭМИТТЕР (РАСЧЁТ).



Смещение фиксированным током базыосуществляется путём включения резистора с большим сопротивлением Rб между базой и источником электропитания Ек ( рисунок 1.20, а). Это создает путь для постоянной составляющей тока базы, т.е. для тока смещения Iбо от +Eк → (э-б)VT → Rб → -Eк.

Ток смещения Iбо создает на входном сопротивлении транзистора напряжение смещения Uбэо, составляющее доли вольт. Сопротивление Rб значительно больше входного, а Uбэо во много раз меньше Ек.

Поэтому, определяя ток смещения, можно пренебречь величиной Uбэо по сравнению с Ек. Тогда получим

Iбо = (Ек - Uбэо) / Rб ≈ Ек/Rб = const , ( 1.36)

т.е. ток базы действительно является фиксированным, не завися­щим от тока коллектора и параметров транзистора.

Недостаток данной схемы является нестабильность режима выход ной цепи, поэтому фиксированное смещение током базы в чистом виде (без специальных мер для стабилизации тока коллектора) в практических схемах не нашло применение.

Смещение фиксированным напряжением базыосуществляется с помощью делителя напряжения, состоящего из резисторов Rб1 и Rб2 (рисунок 1.20,6). Делитель подключается к источнику электропитания Ек, а напряжение с Rб2 поступает на базу и является напряже­нием смещения Uбэо.

Ток Iд, потребляемый делителем от источника электропитания, значительно больше тока базы Iбо, протекающего вместе с Iд по Rб1 откуда

Uбэо = Ек·[ Rб2/(Rб1+Rб2)] = const. ( 1.37)

Таким образом, напряжение смещения действительно не зависит от тока коллектора и параметров транзистора, т.е. является фиксирован­ным.

Для того чтобы осуществлялось смещение фиксированным напряжением базы, сопротивление Rб2 должно быть значительно меньше входного сопротивления транзистора. Это уменьшает общее входное сопротивление каскада, что является недостатком схемы.

В усилительных каскадах с полевыми транзисторами электропитание выходных цепей осуществляется так же, как и в каскадах на биполярных транзисторах.

При отсутствии сигнала на входе усилителя значение выходного тока должно быть постоянным, т.е. положение рабочей точки в исходном состоянии должно быть неизменным - стабильным. Однако в ре­зультате действия различных внешних факторов режим работы усилительного элемента оказывается нестабильным. Причинами неста­бильного режима работы усилительного элемента являются: измене­ние температуры окружающей среды, нестабильность напряжения ис­точников электропитания, разброс параметровусилительных элементов и др. Особенно сильно влияет режим работы усилительного элемента повышение температуры окружающей среды, вызывающее резкое из­менение начального тока коллектора Iк.н. Так , при увеличении тем­пературы на каждые 10°С Iк.н. возрастает в 2 раза у германиевых транзисторов и в 3 раза у кремниевых. В результате ток покоя коллек­тора Iко увеличивается в несколько раз.

Таким образом, простые схемы смещения не обеспечивают необхо­димой стабильности режима транзистора. Поэтому в транзисторных усилителях обычно применяют различные способы стабилизации ре­жима работы усилительного элемента.

а-фиксированная током базы; б- фиксированная напряжение базы

Рисунок 1.20- Схемы нестабилизированные смещения рабочей точки транзистора

МЕТОДЫ СТАБИЛИЗАЦИИ НАЧАЛЬНОЙ РАБОЧЕЙ ТОЧКИ В УСИЛИТЕЛЬНЫХ КАСКАДАХ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ: СХЕМА КОЛЛЕКТОРНОЙ СТАБИЛИЗАЦИИ (ПРИНЦИП ДЕЙСТВИЯ, РАСЧЁТ).

коллекторная стабилизация ( рисунок 1.23,а). Эта схема от­личается от схемы смещения фиксированным током базы тем, что резистор Rб, соединенный с базой, подключается вторым концом к коллектору, а не к источнику электропитания. Поэтому падение напря­жения на ней можно считать равным напряжению коллектора Uko, если пренебречь малым падением напряжением на эмиттерном пере­ходе по сравнению с Uko. Ток смещения равен :

Iбо ≈ (Ек - Iko·Rk) / Rб, ( 1.38)

т.е. зависит от тока коллектора.

Если, например, с повышением температуры ток коллектора увели­чивается, то возрастает и ток эмиттера, увеличивается падение напря­жение на коллекторной нагрузки Rk, понижается напряжение Uko, а следовательно уменьшается ток смещения Iбо. Это вызывает умень­шение тока коллектора Iко.

Итак, возрастание тока коллектора в итоге всех процессов приводит куменьшению смещения, а это препятствует росту Iко, который таким образом стабилизируется.

В данной схеме действует параллельная отрицательная обратная связь по постоянному напряжению. Коллекторная стабилизация дейст­вует более эффективно только при большом сопротивлении нагрузки Rk и когда уменьшается по величине сопротивление Rб.

Схема коллекторной стабилизации положение исходной рабочей точки применяется редко. Она проста, экономична, но не обеспечивает достаточную стабилизацию положения исходной рабочей точки.

Рисунок 1.23 - Схемы стабилизации напряжения коллекторная ( а)

 


Дата добавления: 2019-07-15; просмотров: 435; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!