НЕЙТРАЛИЗАЦИИ ТОКСИЧНОСТИ ОТРАБОТАВШИХ ГАЗОВ АВТОМОБИЛЯ.



Таблица 1

Удельный выброс токсичных веществ автомобилем малого класса с карбюраторным двигателем.

   

Выброс токсичных веществ, г/км

 

Конструктивные особенности автомобиля     CO   CH   NOx  
автомобиль: без устройств снижения токсичности ОГ с комплектом антитоксичных устройств предельно допустимая норма с 1.1.1978г.   25,7   12   16,75   1,9   1,02   1,17   2   0,75   0,85  

технологических методов контроля и регулировки автомобилей, со здание необходимой для этих целей контрольно-измерительной аппаратуры, оборудования и приборов; организацию постов контроля токсичности ОГ; нормирование контроля токсичности ОГ

Токсичность ОГ автомобилей оценивают по ездовым циклам, характеризующим движение автомобилей в реальных условиях эксплуатации. Однако реализация их в условиях АТП в ближайшие годы затрудняется из-за отсутствия необходимого оборудования и приборов, высокой трудоемкости и большой продолжительности проведения испытаний. Кроме того, испытания даже подготовленного автомобиля отличаются нестабильностью (до 40% и выше) результатов определения массы токсичных веществ в ОГ. Поэтому при проведении контрольных испытаний автомобиль особенно тщательно подготавливают к работе и правильному выполнению операций ездового цикла.

Основные показатели ездового цикла, влияющие на стабильность выброса токсичных веществ, имеют погрешность измерения, %:

Автомобиль           ........ . . . 18

Водитель .            ... .        . . 12

Окружающие условия .   ...    . . 8

Топливо . . ...  ..  . . . . . . 5

Динамометр .............. .... . . ...... 3 

Газоаналитическое оборудование .... 2

Для автомобилей, находящихся в эксплуатации, нестабильность результатов определения токсичных веществ достигает ещёбольших величин и в отдельных случаях отличается в 1,5—2 раза,

Получение однозначных результатов требует строгого соблюдения методики проведения испытаний и высокой точности измерения выброса токсичных веществ в ОГ. Точность измерения объёмного содержания токсичных веществ в ОГ является наиболее ответственным моментом при оценке токсичности ОГ. Погрешность измерения СО на величину 0,1—0,2% по объему приводит к ошибке 15—20% при определении массы указанного компонента, выбрасываемого за ездовой цикл. Поэтому аппаратура для проведения газового анализа должна обладать высокой точностью быстротой и непрерывностью проведения газового анализа,

Принимая во внимание перечисленные особенности ездовых циклов, последние применяются в настоящее время при испытаниях в научных исследованиях и на заводах автомобильной промышленности.

Упрощенный метод оценки токсичности ОГ автомобилей, находящихся в эксплуатации, для АТП основан на получении эквивалентных результатов при испытании автомобиля по ездовому циклу и на отдельных наиболее характерных эксплуатационных режимах его работы.    

Для решения проблемы рациональной организации движения, в том числе безостановочного движения автомобилей, предусматривают строительство пешеходных переходов и туннелей.   

Таблица 2

Влияние режима дорожного движения на выброс токсичных веществ автомобилем среднего класса с карбюраторным двигателем

 

Режим дорожного движения

 

 

Выброс  

токсичных веществ

г/км

 

  СО     СН     N0x  
безостановочное на перегоне   18,2   1,37   1,09  

движение на перегоне при наличии

средств регулирования (светофор)

 

           
19,6   1,50   1,07  
одного перекрестка   21,5   1,55   1,06  
двух перекрестков   24,2   1,62   1,05  

 

Наличие средств регулирования на перегоне длиной 1 км неизбежно увеличивает выброс токсичных веществ с ОГ (табл. 2)

Выброс токсичных веществ автомобиля в различных условиях эксплуатации изменяется в зависимости от скорости движения автомобиля. В городских условиях эксплуатации при невысоких скоростях движения выброс СО в 1,46—2,2 и СН в 2,1—2,8 раза выше по сравнению со свободным движением. При повышении скоростей эта разница заметно уменьшается (рис. 1).

При увеличении скорости движения грузового автомобиля (средней грузоподъемности с карбюраторным двигателем) с 20 до 60 км/ч количество токсичных веществ уменьшается: СО с 83 до 27 г/км, а СН с 10 до 5,8 г/км.

Рис.1. Зависимость выброса токсичных веществ от скорости

движения авто­мобиля ЗИЛ-130.

ΔP - разрежение во впускном трубопроводе; qCO— выброс СО, г/кг; qNOx — выброс N0 x . г/кг;

qCH -выброс СН, г/км

НЕЙТРАЛИЗАЦИИ ТОКСИЧНОСТИ ОТРАБОТАВШИХ ГАЗОВ АВТОМОБИЛЯ.

Для автомобилей с бензиновыми двигателями характерна низкая концентрация свободного кислорода в ОГ при работе с коэффициентом избытка воздуха а 1. Именно режимы с а < 1 дают основную долю мас­совых выбросов продуктов неполного сгорания топлива в испыта­тельном цикле.

Для эффективной нейтрализации СО и CnHm значение суммар­ного коэффициента избытка воздуха в нейтрализаторе а =(Gв+Gвдоп)/14.9Gт должно бьпь не менее чем 1,05, что достигается подачей в систе­му выпуска перед нейтрализатором дополнительного воздуха (gbв доп) Одним из наиболее распространенных типов устройств, обеспечивающих подачу дополнительного воздуха, является нагне­татель ротационного типа с приводом от коленчатого вала. В ав­томобиле ГАЗ-24 с карбюратором, выполненным с предельными от­клонениями в сторону обогащения смеси, производительность наг­нетателя, равная 60 м3/ч, обеспечивает условия для очистки ОГ по окиси углерода на 90—95%, по углеводородам на 70—85%. Систе­ма нейтрализации ОГ (СНОГ) в составе каталитического палладиевого нейтрализатора и ротационного нагнетателя обеспечивает вы­полнение самых жестких норм на выбросы окиси углерода и угле­водородов

На двигателях, имеющих настроенную систему выпуска с ин­дивидуальными выпускными патрубками на каждый цилиндр, можно применять бескомпрессорную подачу дополнительного воздуха с помощью малоинерционных обратных клапанов (пульсаров) Пуль­сары (рис. 3), устанавливаемые на выпускном трубопроводе двигате­ля, срабатывают от импульсов разрежения, возникающих в пульси­рующем потоке ОГ двигателя за выпускными клапанами. Лепест­ковый клапан пульсара открывается в момент разрежения в потоке ОГ и пропускает в коллектор воздух, а при прохождении волны повышенного давления запирается. Следует отметить, что производительность пульсаров мало зависит от противодавления в системе выпуска, что немаловажно при установке нейтрализаторов последовательно со стандартным глушителем шума выпуска. Уста­новка пульсаров практически не влияет на топливно-скоростные характеристики автомобиля.                  

 

 

Рис. 3 Схема пульсара.

1 — перфорированная пластина, 2 эластичная мембрана, 3упор обтекатель

 

Нейтрализаторы бензиновых двигателей работают в диапазоне температур ОГ от 120°С на холостом ходу, до 600 °С на форсированных режимах. Каждый процент по­вышения объемных концентрации СО или СnHm в ОГ повышает темпе­ратуру реакции на катализаторе примерно на 100°С. Верхний диа­пазон температур в реакторе при мощностном обогащении смеси мо­жет достигать 800 900 °С, а при возникновении неисправностей в системе питания и зажигания — 1000 1100°С. Это аварийный ре­жим, который может привести к спеканию катализатора, прогару реак­тора и корпуса нейтрализатора.

Для прекращения подачи допол­нительного воздуха в реактор на аварийных по температуре режи­мах, а также на принудительном холостом ходу во избежание возник­новения «хлопков» в нейтрализаторе применяется система контроля и автоматического управления. Она включает в себя датчик температуры (термопару), установленный в реакторе, электронный блок управления, трехходовой электромагнитный кла­пан и клапан отсечки воздуха. Электронный блок подает управляю­щий сигнал на трехходовой клапан при достижении определенного по­рога температур (около 850 °С). Клапан срабатывает также от мак­симального разрежения во впускном трубопроводе двигателя при его работе на принудительном холостом ходу. В обоих случаях он, воздей­ствуя на клапан отсечки воздуха, предотвращает подачу воздуха в ней­трализатор. Такая система применяется с любым типом воздухоподающих устройств — нагнетателем, эжектором или пульсарами.

Электронный блок управляет сигнальной лампочкой на щитке приборов водителя - в кабине автомобиля. В диапазоне температур 300—850 °С лампоч­ка не горит — нейтрализатор работает нормально При температуре ниже 300 °С лампочка загорается, а при температуре выше 850 °С горит прерывис­то В первом случае она сигнализирует о том, что нейтрализатор не выходит на активный режим из-за отсутствия подачи воздуха или потери активности катализатора, во втором — о возникновении неисправностей в двигателе. В любом случае необходимо прекратить эксплуатацию СНОГ до выяснения и устранения неисправностей.

 

Токсичность отработавших газов и способы её снижения у современных автомобилей.

Экологические требования к автомобилю и его двигателю являются в настоящее время приоритетными. Экологическая чистота выхлопа закладывается в конструкцию двигателя и автомобиля в целом еще при проектировании. Далее в экс­плуатации характеристики токсичности должны оставаться стабильными. Регулировка токсичности у двигателей совре­менных автомобилей в большинстве случаев или не требуется или сильно ограничена. В то же время у двигателей авто­мобилей прошлых лет выпуска, особенно с карбюраторами, токсичность выхлопа напрямую связана с техническим состо­янием системы питания и зажигания и их регулировкой. По­этому в настоящее время ремонт двигателя, какой бы слож­ный он ни был, не может считаться квалифицированным и ка­чественным, если токсичность выхлопа двигателя после ре­монта превышает установленные допустимые пределы.

Основная доля вредных веществ, содержащихся в отработавших газах двигателей и загрязняющих окружающую среду, состоит из окиси углерода СО, окислов азота NOx, углеводородов CnHm (или просто СН). а также углерода С (сажи) у дизелей. Из перечисленных веществ СО, СН и С явля­ются продуктами неполного сгорания топлива. Количество NOx в выхлопных газах связано, в основном, с высокой тем­пературой сгорания. Окислы азота образуются в двигателе при взаимодействии кислорода и азота, содержащихся в воз­духе. Чем выше температура сгорания, тем больше образует­ся NOx. На температуру сгорания влияют конструктивные факторы (например, степень сжатия) и режим работы двига­теля (состав смеси, нагрузка). У бензинового двигателя наи­большее влияние на образование вредных веществ оказыва­ет состав смеси. При а = 1.0-1.10 концентрация NOx в вы­хлопных газах максимальна, а выбросы СО и СН близки к ми­нимальным (рис.4).

 

 

Рис. 4. Состав отработавших газов бензинового двигателя в зависимости от состава топливовоздушной смеси:

а — без нейтрализатора б — с трехкомпонентным нейтрализатором

 

Уменьшение количества и изменение качественного со­става вредных веществ, выбрасываемых в окружающую сре­ду с отработавшими газами, достигается целым комплексом мероприятий. Среди них следует отметить ряд конструктив­ных разработок - специальные конструкции камер сгорания для работы на бедных смесях, в том числе с различными ти­пами форкамер, рециркуляция отработавших газов, т.е. пода­ча их части на вход в двигатель, системы регулирования фаз газораспределения, уменьшающие перекрытие клапанов на пониженных режимах и т.д. Однако даже при использовании в конструкции двигателей всех самых передовых решений удовлетворить нормам токсичности, установленным, напри­мер, в США, Японии и странах Европы, не удается. Вследст­вие этого современные автомобили с бензиновыми двигате­лями снабжаются каталитическими нейтрализаторами.

Нейтрализатор состоит из носителя, заключенного в кор­пус. Носитель представляет собой керамический материал (сотовой конструкции или в виде шариков), покрытый тонким слоем катализатора из благородных металлов, например, платины, палладия, родия. При температуре поверхности ка­тализатора свыше 250-300°С содержащиеся в отработавших газах окислы углерода СО эффективно окисляются, а их кон­центрация в выхлопных газах снижается во много раз. Окис­ление углеводородов СН происходит при более высокой тем­пературе (400°C). Окисление СО и СН происходит в присутст­вии свободного кислорода воздуха, небольшое количество ко­торого образуется в результате сгорания:

2СО + О2 -> 2С02

СmНn + (m + n/4)O2 -> mCO2 + (n/2)Н2О

Такие реакции могут происходить в широком диапазоне изменения состава смеси - необходимо только, чтобы отрабо­тавшие газы имели коэффициент, а более 1,0, что достигается работой двигателя на обедненной смеси или подачей в систе­му выпуска дополнительного воздуха.

Подобные нейтрализаторы получили широкое распростра­нение на автомобилях с начала 80-х годов, в том числе, с кар­бюраторной системой подачи топлива. Однако последова­тельное ужесточение норм токсичности потребовало созда­ния нейтрализаторов, снижающих не только концентрацию

Рис. 5. Токсичность выхлопа и дымность (К) дизелей с разделенной камерой сгорания:

а — по частоте вращения (----) — для двигателя с неразделенной камерой, б — по составу смеси (нагрузке) в — по углу опережения впрыска (©вп)

СО и СН, но и одновременно окислов азота NОх. Такие нейт­рализаторы называются трехкомпонентными.

Основная проблема заключена в том, что в отличие от указанных выше реакций окисления уменьшение концентра­ций NOx является реакциями восстановления:

2NO + 2СО -> N2 + 2СO2 ;

2NO + 2Н2 -> N2 + 2Н2O ;

2NO + 5Н2 -> 2NНз + 2Н2O (при а < 1).

Для одновременного уменьшения выбросов СО, СН и NOx необходимо поддерживать определенный состав смеси в ци­линдрах двигателя (а около 1,0) с очень высокой точностью - порядка ±1% (рис.4). Чтобы обеспечить такую точность поддержания состава смеси, на современных двигателях ус­танавливают электронные системы управления подачей топ­лива и снижения токсичности с обратной связью по сигналу датчика концентрации кислорода. Именно ужесточением норм токсичности (а не требованиями экономичности или мощности) объясняется повсеместное внедрение на автомо­билях сложных электронных систем топливоподачи. Слож­ность этих систем со временем, вероятно, будет увеличивать­ся вместе с дальнейшим ужесточением норм токсичности.

Следует отметить высокую чувствительность каталитичес­кого нейтрализатора к качеству применяемого топлива. В ча­стности, использование этилированного бензина приводит к так называемому "отравлению" катализатора с разрушением покрытия и даже самой керамической основы катализатора.

Помимо нейтрализатора, на многих японских и американ­ских двигателях устанавливают так называемые термические реакторы. Такие устройства позволяют при подмешивании к отработавшим газам воздуха доокислить СО и СН, снижая их концентрацию за счет реакции с кислородом воздуха при вы­сокой температуре (свыше 500°С). Реакторы особенно эф­фективны на режимах богатой смеси при больших нагрузках, не выходят из строя со временем, однако не дают полного окисления СО и СН, поэтому применяются как дополнитель­ные устройства перед нейтрализатором.

Рециркуляция отработавших газов применяется на двига­телях не менее широко. Основная задача рециркуляции - сни­жение выбросов NOx. Это особенно важно, когда в нейтрали­заторе не обеспечено точное поддержание состава смеси (подобная ситуация характерна для карбюраторной системы питания). Рециркуляция предполагает отбор выхлопных газов в количестве до 10-12% и подачу их на вход двигателя на ре­жимах средних и полных нагрузок.

Поскольку каждая из рассмотренных систем выполняет свою задачу, на практике, особенно на японских автомобилях, они нередко встречаются одновременно - термический реак­тор, система рециркуляции и каталитический нейтрализатор. Это предполагает существенное усложнение функций системы управления. На двигателях японских автомобилей прошлых лет выпуска с карбюраторами это выражалось в значительном чис­ле пневмоклапанов и шлангов в системе управления двигателя.

В отличие от бензиновых двигателей дизели имеют суще­ственно более низкий уровень выбросов СО, NOx и СН. Наи­более низкий уровень выбросов СО и СН достигается обычно на режимах средних нагрузок (рис. 5). Большие различия в уровне и характере изменения выбросов в зависимости от состава смеси у дизелей по сравнению с бензиновыми двига­телями связаны с иной природой процесса сгорания - у бен­зинового двигателя с помощью свечи поджигается хорошо пе­ремешанная смесь воздуха и паров топлива, а в дизеле про­исходит самовоспламенение в факеле распыляемого топлива в зонах с концентрацией топлива около а = 1.

В выхлопных газах дизеля присутствуют, иногда в больших количествах, частицы углерода (сажа). Это происходит из-за наличия зон богатой смеси в струе распыляемого топлива. Сажевыделение дизеля создает характерный черный дым выхло­па и так же, как и другие вещества, ограничивается нормами токсичности. Снижение сажевыделения достигается более ранним впрыском (ограниченным, правда, "жесткостью" сгора­ния и повышением нагрузок на детали) и ограничением подачи насоса. Среди конструктивных мероприятий следует отметить увеличение скорости впрыска и качества распыливания топли­ва за счет увеличения давления подачи, а также электронное регулирование подачи. Дымление двигателя резко возрастает при приближении состава смеси к стехиометрическому (а = 1), поэтому дизели, несмотря на то, что вблизи а = 1 мощность и крутящий момент максимальны, имеют ограничение  по пре­делу дымления. Сравнительно низкий уровень СО, СН и NOx в отработавших газах дизеля не требовал в прошлом установки специальных устройств для снижения токсичности. Однако в последние годы ужесточение норм токсичности коснулось и ди­зелей - на многих моделях автомобилей с дизельными двигате­лями уже появились системы снижения токсичности выхлопа, включающие рециркуляцию выхлопных газов, каталитический нейтрализатор и специальный сажевый фильтр.

 

 


Дата добавления: 2019-07-15; просмотров: 134; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!