Мультиплексоры/демультиплексоры и ключи



Мультиплексоры/демультиплексоры – важный класс логических схем малой степени интеграции. Их довольно часто применяют и в современных схемах совместно с микроконтроллерами – для сокращения числа необходимых соединений.

Мультиплексором называют схему, которая соединяет единственный входной вывод напрямую с одним из нескольких выходных (как правило, четырех или восьми), в зависимости от поданного на нее двоичного кода (схема «1 –> 8»). Соответственно, демультиплексор осуществляет обратную операцию – пропускает сигнал с одного из нескольких выводов на единственный выходной (схема «8 –> 1»). Фишка состоит в том, что в КМОП‑версии они прекрасно коммутируют не только цифровые, но и аналоговые сигналы, причем в обе стороны!

Такие мультиплексоры/демультиплексоры делают на ключах – специальным образом включенных полевых транзисторах по технологии КМОП. Простейший такой ключ изображен на рис. 15.9, а . Выпускаются также и микросхемы, содержащие просто наборы отдельных ключей, – например, 590КН2 и аналогичные, мы еще с ними столкнемся. Такие ключи широко используются в составе микросхем средней и большой степени интеграции – в аналого‑цифровых и цифроаналоговых преобразователях, например. Также они практически заменили механические переключатели в коммутаторах телевизионных каналов, используются в цифровых переменных резисторах, электронных реле и т. д.

На рис. 15.9, б приведена для примера схема разводки выводов микросхемы 561КП2, которая представляет собой восьмиканальный мультиплексор/демультиплексор (561КП1 делает то же самое, но содержит два четырехканальных мультиплексора).

Эта микросхема коммутирует один из выводов, обозначенных как 0–7, к выводу Q , в зависимости от поданного на управляющие входы А‑С двоичного кода. Очень важную функцию осуществляет вход Е (с инверсией, т. е. активный уровень на нем – низкий) – это вход разрешения, и если на нем присутствует высокий уровень, то все каналы размыкаются.

 

 

Рис. 15.9. Использование КМОП ‑ключей:

а – простейший униполярный ключ,

б – разводка выводов мультиплексора/демультиплексора 561КП2

 

Специально для коммутации переменных аналоговых сигналов у 561КП2 предусмотрено подключение отрицательного питания (вывод 7 ), в случае цифровых же сигналов этот вывод коммутируется просто на «землю». Размах питания между выводами 7 и 16 не может превышать предельно допустимого для однополярного питания 561‑й серии значения 15–18 В, т. е. двухполярное питание возможно примерно до ±8 В. Однако уровень сигнала управления (как по входам А‑С , так и по Е ) при этом отсчитывается от «цифровой земли», которая установлена потенциалом вывода 8 . При этом аналоговый сигнал по амплитуде может достигать почти значений питания, только для получения минимума искажений коммутируемые токи также должны быть малы.

 

ГЛАВА 16

Устройства на логических схемах

 

Мультивибраторы, формирователи, триггеры, счетчики…

 

 

Сердце молодого гасконца билось так сильно, что готово было разорвать ему грудь Видит бог, не от страха – он и тени страха не испытывал – а от возбуждения.

А. Дюма . Три мушкетера

 

 

Из описания устройства логических элементов в главе 15 ясно, что любой логический элемент есть в сущности не что иное, как усилитель. Мы даже упоминали, что логические микросхемы иногда используют в качестве аналогового усилителя.

В самом деле, с формальной точки зрения между простым многокаскадным усилителем без обратной связи и логическим инвертором разницы нет никакой. Правда, аналоговым усилителем логический элемент будет очень плохим – коэффициент усиления по напряжению у КМОП‑элементов составляет всего несколько десятков, в отличие от сотен тысяч и миллионов у операционных усилителей и компараторов, и даже введение обратной связи не поможет получить качественный сигнал. Если кого‑то интересует такое экзотическое использование логических микросхем, то в упоминавшейся книге [18] есть схема линейного усилителя на КМОП‑элементах, можете поэкспериментировать.

Но зато логические микросхемы идеально приспособлены для работы в схемах, так сказать, «полуаналоговых» – т. е. схемах генераторов, формирователей и преобразователей импульсов. Ими мы сначала и займемся.

 

 

Генераторы

До сих пор мы рассматривали только два способа построения генераторов колебаний: один раз это был релаксационный генератор коротких импульсов на однопереходном транзисторе (см. рис. 10.3) для фазового управления тиристорами, второй раз – аналоговый генератор синусоидальных колебаний на ОУ (см. рис. 12.6). Был еще «зуммер» из реле, приведенный на рис. 7.3. Теперь рассмотрим релаксационные генераторы прямоугольных импульсов на логических микросхемах.

* * *

 

Подробности

Релаксационными, в отличие от гармонических, называются колебания в системах, где существенную роль играет рассеяние энергии, или, как говорят физики, ее диссипация. Типичными примерами систем с гармоническими колебаниями служат описанные в любом школьном учебнике физики колебательный контур или механический маятник. В них энергия непрерывно переходит из одной формы в другую, и если не учитывать потери на нагревание проводов в контуре или потери на трение в маятнике, то эти колебания могут продолжаться бесконечно без всякой подпитки извне. В отличие от таких систем, релаксационные генераторы без внешнего источника неработоспособны, в них энергия, запасенная в накопителе (например, конденсаторе), не переходит в другую форму, а теряется – переходит в тепло. Для возникновения релаксационных колебаний обязательно требуется наличие нелинейного порогового элемента, меняющего свое состояние скачком, а также определенный характер обратных связей (о чем далее). Релаксационные генераторы обычно выдают скачкообразный сигнал (прямоугольный, как в большинстве генераторов далее, или импульсный, как в генераторе на однопереходном транзисторе), но не всегда. Так, генератор синусоидальных колебаний из главы 12 также является релаксационным, но с помощью хитро подобранных характеристик цепей обратной связи сделано так, что форма сигнала меняется по синусоидальному закону.

 

* * *

Но сначала рассмотрим такой генератор на ОУ (рис. 16.1, а ). Работает он следующим образом. Мы помним, что в первый момент времени заряжающийся конденсатор эквивалентен короткозамкнутой цепи. Поэтому после включения питания коэффициент усиления по инвертирующему входу окажется равен бесконечности, и на выходе ОУ будет фактически положительное напряжение питания. Конденсатор начнет заряжаться через резистор R1, но в силу большого коэффициента усиления ОУ напряжение на выходе останется вблизи напряжения питания, пока потенциал на конденсаторе не достигнет порога, заданного делителем R2/R3, – в данном случае половины положительного напряжения питания. Тогда выход ОУ скачком перебросится в состояние, близкое к отрицательному напряжению питания, и конденсатор начнет разряжаться через тот же резистор R1. Напряжение на неинвертирующем входе станет равным половине отрицательного напряжения питания, и, чтобы привести схему в первоначальное состояние, конденсатору придется перезарядиться до этого напряжения. Затем все повторится сначала. Таким образом, на выходе мы получим меандр с периодом, который определяется параметрами RC‑цепочки (см. формулу на рис. 16.1, а ). На инвертирующем входе, между прочим, при этом будет напряжение, очень близкое к треугольной форме, которое можно где‑нибудь использовать, если подключить потребителя через отдельный развязывающий повторитель на другом ОУ.

 

 

Рис. 16.1. Схема генератора на ОУ (а) и зуммера на реле (б)

* * *

 

Заметки на полях

Отметьте, что если исключить из рассмотрения интегрирующую цепочку R1C1, то остальная часть схемы есть упрощенный вариант компаратора с гистерезисом, приведенного на рис. 12.10. Для того чтобы генератор работал от одного напряжения питания, придется неинвертирующий вход подключить в точности так же, как там – к искусственной средней точке. Подобные генераторы ранее были широко распространены, и поныне разными производителями выпускается специальная микросхема, которая известна под названием «таймер 555» и может служить как в качестве генератора, так у\ одновибратора, т. е. формирователя однократных импульсов, в том числе большой длительности.

 

* * *

Теперь посмотрим, что нужно сделать, чтобы построить такой генератор на логике.

Сначала обратимся к зуммеру на рис. 7.3 и перерисуем его в виде рис. 16.1, б . В таком виде в схеме легко узнать релейный инвертор (см. рис. 14.3, крайний элемент справа), у которого в данном случае выход управляет входом. Не получится ли выполнить тот же самый фокус, если замкнуть вход с выходом у обычного инвертора в интегральном исполнении? К сожалению, нет – такое включение просто выведет инвертор в линейный режим, при котором на выходе установится половина питания. А почему? А потому, что логические элементы, грубо говоря, слишком быстродействующие.

Теория гласит, что для получения устойчивых колебаний необходимо, чтобы присутствовали обе разновидности обратной связи, причем действие отрицательной обратной связи (ООС) должно отставать от действия положительной (ПОС). Именно это и происходит и в схеме генератора на основе компаратора, за счет использования RC‑цепочки, и в зуммере за счет механической инерции деталей. Действие только одной ПОС приведет к тому, что выход устройства «зависнет» в одном из крайних положений, а одной только ООС – к тому, что на выходе установится некое среднее состояние равновесия. Сравните поведение одновибраторов, рассмотренных в этой главе далее, в которых наличествует только ООС, и RS‑триггеров (в конце главы), в которых присутствует только ПОС. А вот вместе они дадут то, что надо.

Существует огромное количество схем мультивибраторов – т. е. генераторов прямоугольных колебаний, реализующих эти теоретические положения. Если кому любопытно, то не менее десятка разнообразных схем можно найти только в одной книге [11], и этим их многообразие далеко не исчерпывается. Я приведу лишь одну из них, выбранную из многих из‑за минимального количества задействованных компонентов, и два ее варианта, разница между которыми заключается в используемых элементах («И‑НЕ» или «ИЛИ‑НЕ»).

Схема на рис. 16.2, а базовая. При включении питания она начинает работать сразу и, как и остальные схемы подобного рода, выдает меандр с размахом от 0 до Uпит . Частота на выходе определяется параметрами R1 и С1: период Т ~= 2R1·C1. Схема устойчиво работает при величине резистора R1 от нескольких килоом до 10 МОм, что составляет достаточный диапазон для того, чтобы избежать искушения при малых частотах использовать электролитические конденсаторы – напомним, что они очень нестабильны при работе во времязадающих цепях.

Резистор R2 в работе схемы почти не участвует и нужен только для того, чтобы оградить защитные диоды микросхемы от перегрузки током разряда конденсатора С1. Величина его может изменяться от сотен ом до нескольких килоом, при условии, что он много меньше R1. Его можно и вообще исключить из схемы, отчего он показан пунктиром (о необходимости установки этого резистора мы будем говорить позже). Конденсатор С1 может применяться любой, с емкостью не меньшей нескольких десятков пикофарад. Указанные параметры элементов позволяют получить частоты от сотых долей герца вплоть до верхней границы рабочей частоты «классических» КМОП‑микросхем в 1–2 МГц. Для получения более высоких частот целесообразно использовать быстродействующие серии КМОП, а не ТТЛ, т. к. для последней ограничения гораздо жестче – например, резистор R1 не должен выходить за пределы 0,5–2 кОм.

 

 

Рис. 16.2. Схемы мультивибратора на логических элементах:

а – базовая схема на инверторах,

б – схема на двухвходовых элементах с управлением;

в – диаграмма состояний схемы на двухвходовых элементах «И‑НЕ»;

г – диаграмма состояний схемы на двухвходовых элементах «ИЛИ‑НЕ»

 

Если в схеме на рис. 16.2, б объединить входы логических элементов между собой, она превратится в схему на рис. 16.2, а . Но дополнительные входы можно использовать и для управления генерацией. Нередко возникает потребность остановить генерацию на время и при этом обеспечить определенный логический уровень на выходе генератора. Эти задачи как раз и решаются с помощью дополнительных входов. Диаграммы состояния выхода в зависимости от состояния входов при использовании разных типов логических элементов приведены на рис. 16.2, в и г .

Запоминать эти диаграммы нет необходимости, если обратиться к рис. 15.8. Из него следует, что единица на входе «И‑НЕ» и ноль на входе «ИЛИ‑НЕ» являются разрешающими уровнями, следовательно, при этих уровнях на управляющих входах наша схема будет функционировать, как если бы входы элемента были объединены. При запрещающих же уровнях на входе уровень на выходе будет устанавливаться так, как если бы никаких RC‑цепочек не существовало.

Простейшее применение схемы с управлением – решение задачи приостановки генератора на время переходных процессов при включении питания, для чего по управляющему входу нужно поставить интегрирующую RC‑цепочку, как в схеме триггеров с предустановкой (см. далее рис. 16.9). Другое применение – генерация пачек импульсов с меньшей частотой, если управляющий вход одного генератора присоединить к выходу другого. На рис. 16.3 показана схема звуковой сигнализации на одной микросхеме 561ЛА7 и одном транзисторе. Это пример случая, когда требуется определенный логический уровень при выключенной генерации, чтобы избежать протекания постоянного тока через динамик и не ставить при этом разделительный конденсатор.

 

 

Рис. 16.3. Схема звуковой сигнализации с динамиком на выходе

 

Схема выдает сигнал около 500 Гц с периодом повторения около 0,5 с, если на управляющий вход подать сигнал высокого уровня. При сигнале низкого уровня на управляющем входе на выходе будет также низкий уровень, и постоянный ток через динамик не течет. Транзисторный каскад лучше питать нестабилизированным напряжением от входа стабилизатора питания микросхем, потому что тогда достаточно мощные импульсы тока через динамик будут фильтроваться стабилизатором и не окажут вредного воздействия на остальные элементы схемы. Динамик можно заменить и на пьезоэлектрический звуковой излучатель, тогда мощный транзистор ставить необязательно (но вовсе без транзистора не обойтись, звук будет слишком тихим). А о пьезоэффекте мы сейчас подробнее и поговорим.

 

 

Кварцевые генераторы

Точность поддержания частоты в приведенных схемах невысока. Частота «уходит» примерно на 10–20 % при изменении напряжения питания от 5 до 15 В и в достаточно большой степени зависит от температуры (использование высокостабильных резисторов и конденсаторов не поможет, и потому нецелесообразно). Чтобы избавиться от этого эффекта, необходимо применить кварцевый резонатор, в просторечии – просто кварц.

Здесь не место для того, чтобы подробно излагать принципы работы кварцевого (или реже употребляемого керамического, который обладает несколько меньшей стабильностью) резонатора – это нужно делать в курсе радиотехники в сравнении со свойствами колебательного контура. Вкратце дело заключается в следующем: если приложить напряжение к кварцевому параллелепипеду, выпиленному из целого кристалла в определенной ориентации относительно его осей, то кристалл деформируется – очень не намного, но все же достаточно, чтобы на этом принципе даже делать прецизионные манипуляторы для электронных микроскопов или выталкивающие жидкость поршни в струйных принтерах Epson . Это так называемый обратный пьезоэлектрический эффект . Имеет место и противоположный прямой эффект – если такой кристалл деформировать, то у него на гранях появляется разность потенциалов, – явление используется в специальных тензометрических кварцах.

Получается, что если мы включим такой кристалл в схему с обратной связью, то она начнет генерировать колебания, причем частота генерации будет зависеть исключительно от размеров кристалла – и ни от чего больше! Как, спросите вы, даже от температуры не будет зависеть? Вот именно – пьезоэлектриков , как называют вещества, ведущие себя подобно кварцу, много, но чаще всего используют именно кварц, т. к. он помимо пьезоэлектрических свойств, обладает еще и одним из самых низких на свете температурных коэффициентов расширения.

В результате кварцевые генераторы без каких‑либо дополнительных ухищрений дают погрешности порядка 10‑6 долей от номинальной частоты. Такие доли обозначаются как ррт (part per million ), а иногда просто как 10‑6. Температурная нестабильность хороших кварцев не превышает долей или единиц ррт . Это значит, что уход часов с таким генератором составляет не более 1 секунды в сутки. Правда, для того чтобы реализовать потенциал кварцевых резонаторов полностью, нужны специальные схемы включения, иногда довольно громоздкие (обычно их делают на дискретных элементах), но и схемы на цифровых инверторах, приводимые далее, дают результат не хуже примерно 10 4 во всем диапазоне питающих напряжений и температуры.

На кварцах работают все бытовые электронные часы, и вообще в любом современном бытовом электронном устройстве вы, скорее всего, найдете кварц, а иногда и не один. Кварцы выпускают на определенные частоты, при их приобретении следует обращать внимание на возможное отклонение частоты от номинальной, которая может составлять от долей ррт до десятков и даже сотен ррт . Если нужна повышенная точность, то можно приобрести специализированные очень стабильные резонаторы с погрешностью начальной установки до 10‑7, выпускаются и готовые генераторы на разные частоты (особенно большой выбор предлагает фирма, название которой обычно ассоциируется совсем с другими продуктами, – Epson , приобретшая в свое время компанию, известную своей часовой торговой маркой Seiko ).

Большинство кварцевых генераторов в цифровой технике строят по одной и той же схеме, которая очень проста и требует всего одного инвертора, резистора и двух конденсаторов. Схема эта показана на рис. 16.4, а . Чтобы не перегружать выход (это будет влиять на стабильность), нагружать такой генератор можно только на один‑два КМОП‑входа, поэтому обычно на выходе ставят еще и буферный элемент. Если же частота с выхода подается, например, только на вход КМОП‑счетчика, то его можно не ставить. Параметры всех элементов можно менять в довольно больших пределах – так, емкость конденсаторов может меняться от 10 до 100 пФ (как рассчитать значение емкости более точно, см. «Подробности» далее), причем они не обязательно должны быть одинаковыми, – изменением С1 можно подстраивать частоту в пределах 4–5 знака после запятой. Сопротивление резистора R1 может меняться от 1 до 20 МОм, R2 – от нуля до сотен килоом (меньшие значения получаются при более высокочастотных кварцах). Схема потребляет несколько десятков микроампер при напряжении питания 5 В и устойчиво работает для кварцев с частотами от десятков килогерц до 1 МГц для «классической» КМОП и до 10 МГц для КМОП‑элементов из быстродействующих серий. Правда, с некоторыми старыми отечественными кварцами (вроде РК‑72) могут быть проблемы.

 

 

Рис. 16.4. Схемы кварцевых генераторов на КМОП ‑элементах

 

Инвертор, естественно, может представлять собой и просто инвертор, и многовходовой логический элемент с объединенными входами. Во втором случае один из входов можно использовать для запуска и остановки генерации, как в схеме на рис. 16.2, б .

* * *

 

Подробности

Конденсаторы С1 и С2 в схеме на рис. 16.4, а рассчитывают, исходя из номинальной емкости нагрузки Сн , которая указывается для каждого кварцевого резонатора. Если она неизвестна, то можно ориентироваться на значение 12,5 пФ для «часовых» кварцев и на значение 16–32 пФ для кварцев частотой 1‑16 МГц. Номинал С каждого из конденсаторов (при условии их равенства) можно рассчитать по приблизительной формуле С = 2Сн – 10 пФ, где 10 пФ – «среднепотолочное» значение емкости монтажа плюс емкость входа/выхода инвертора. Таким образом, для «часовых» кварцев эти емкости должны быть порядка 15 пФ, а для более высокочастотных – 22–56 пФ. Для микросхем вроде часов реального времени, где конденсаторы уже имеются в составе микросхемы, указывается номинальная нагрузочная емкость внешнего кварцевого резонатора. Правильно подобранное значение емкости гарантирует более точное соответствие частоты генератора номинальной, но это не значит, что при других значениях емкости генератор не заработает, – чем больше значение емкостей, тем больше и потребляет схема, но и тем быстрее она «заводится». Указанные на схеме значения 22 пФ оптимальны, если использовать резонатор «не глядя».

Кварцевые резонаторы имеют предельно допустимую мощность рассеяния, которая невелика: от 1–3 мкВт для «часовых» кварцев в цилиндрических корпусах 6x2 или 8x3 мм до 30–50 мкВт в низких прямоугольных корпусах (HC‑49S) и 1–2 мВт для кварцев в стандартных прямоугольных корпусах типа HC‑49U. Превышение допустимой мощности еще не означает выхода резонатора из строя (хотя может случиться и такое – смотря, насколько превысить), но стабильность генератора снижается. Значение рассеиваемой мощности на кристалле W можно грубо прикинуть, исходя из падения напряжения на резонаторе: W = Uк ·Iк , где Iк – ток через резонатор, который определяется в основном резистором R2. Его величина подсчитывается, исходя из напряжения на выходе инвертора Uвых : Iк = Uвых /R2 = Uпит /2R2 (делитель 2 появляется, т. к. на выходе мы имеем меандр, а не постоянное напряжение). Рассчитать Uк , форма которого близка к синусоидальной, непросто, но его можно измерить экспериментально, – для «часового» кварца в схеме по рис. 16.4, а действующее значение UK равно примерно 0,05 от напряжения питания. Итого при номиналах резисторов и конденсаторов, близких к указанным на схеме, мощность на «часовом» резонаторе составляет около 1 мкВт при напряжении питания 5 В и линейно растет с напряжением питания, поэтому при 15 В самые миниатюрные кварцы лучше не ставить.

 

* * *

Недостатком схемы на рис. 16.4, а является то, что на низких частотах она достаточно долго «заводится» при включении – установление режима для «часового» кварца 32 768 Гц может занимать секунды, в зависимости от значения емкостей, и в это время схема потребляет довольно большой ток – до 15 мА. Этого недостатка лишена более сложная схема на рис. 16.4, б , которая, однако, работает только при частотах в десятки килогерц, т. е. ориентирована на «часовые» кварцы. Потребление такой схемы при напряжении питания 3,3 В и использовании указанных на схеме элементах серии 74НС составляет 180 мкА (3 мА в момент включения), а время выхода на режим при включении питания или подаче разрешающего высокого уровня на вход «Пуск/Стоп» не превышает 0,2–0,3 с. При отключении подачей низкого уровня на вход «Пуск/Стоп» схема потребляет меньше 1 мкА. В этой схеме резонатор работает в более щадящем режиме, чем в схеме на рис. 16.4, а .

Специально для измерения температуры производятся термочувствительные кварцы, обладающие чувствительностью порядка 50–90 ррт изменения частоты на каждый градус изменения температуры. Кварцы эти выпускают на разные частоты: 30–40 кГц, 5 МГц, 10–40 МГц и пр. Если заменить в схеме на рис. 16.4, б «часовой» кварц аналогичным термочувствительным (например, отечественным РКТ‑206 с частотой 32,7 кГц), то получится отличный малопотребляющий датчик температуры с частотным выходом и отрицательным наклоном зависимости частоты от температуры. Зависимость эту для бытовых применений можно считать линейной, однако для прецизионных измерений температуры (для чего, собственно, такие кварцы и существуют) приходится ее аппроксимировать полиномом 2‑й и даже 3‑й степени.

* * *

 

Заметки на полях

Кстати, мало кто знает, но в случае, если под рукой нет подходящего кварца, схему на рис. 16.4, а вполне можно «завести», просто заменив резонатор малогабаритной индуктивностью. То же относится и к встроенным генераторам микроконтроллеров, которые организуются по аналогичной схеме. Частоту можно грубо прикинуть, если учесть, что постоянная времени LC‑контура равна √LC, где в качестве величины С нужно подставить сумму емкостей обоих конденсаторов. Тогда частота будет примерно равна единице, деленной на удвоенную величину этой постоянной. Естественно, главное преимущество кварца – высокая стабильность – при этом пропадет, зато можно менять частоту, в том числе и плавно.

 

Формирователи импульсов

Все приведенные схемы генераторов выдают меандр, в котором длительность паузы приблизительно равна длительности импульса, т. е. скважность их равна примерно двум (на величину скважности влияет и величина резистора R2 – см. схемы на рис. 16.2). Но нам могут потребоваться симметричные импульсы со скважностью, равной двум с большой точностью или вообще с другим значением скважности. На рис. 16.5 показана схема, которая формирует импульсы со скважностью ровно 2 и 4 из исходного сигнала с любой скважностью. В ней используется делитель частоты на два (счетный триггер ) – элемент, который мы еще «не проходили», но будем рассматривать далее, а пока он приводится без пояснений. Диаграммы выходного напряжения показаны на рис. 16.5 внизу .

 

 

Рис. 16.5. Схема формирователя последовательности со скважностью 2 и 4

 

Следует отметить, что за счет задержки сигнала в триггере в момент, соответствующий фронту второго по счету сигнала исходной последовательности, на втором выходе может возникнуть короткая «иголка», т. к. спад импульса на выходе триггера наступит несколько позже наступления этого фронта. Она не страшна для статических схем (например, дешифраторов с выводом на индикаторы) или для управления внешними достаточно инерционными устройствами, но может вызвать срабатывание другого триггера или одновибратора (см. далее), если к его входу подключить выход такой схемы. Если это критично, то в подобных схемах вместо простого счетного триггера обычно используют специальные синхронные счетчики (о них также далее). Разумеется, если требуется только симметричный меандр, то одного триггера достаточно, элемент «И‑НЕ» можно исключить.

Микросхема 561ТМ2 (CD4013) содержит два триггера, поэтому схему легко дополнить, получив на выходе другие значения частоты и скважности. Применяя дополнительные логические элементы, можно получить 4 выхода, на каждом из которых фаза сдвинута ровно на полпериода исходной частоты, – такие схемы применяют, например, для управления шаговыми двигателями или для управления елочной гирляндой «бегущие огни» (попробуйте составить такую схему сами!).

Большое значение на практике имеют формирователи коротких импульсов, называемые еще схемами выделения фронтов [22]. На рис. 16.6, а приведена схема, которая делает это, как положено , используя эффект задержки сигнала в логическом элементе. При поступлении положительного фронта на вход он сразу же переключает выход последнего элемента «И‑НЕ» в состояние логического нуля. На выходе цепочки из трех инверторов также возникнет логический ноль, который вернет выход в единичное состояние, но это произойдет не сразу, а спустя время, равное утроенной задержке срабатывания логических элементов. Поэтому на выходе возникнет короткая «иголка», достаточная по длительности (задержка‑то тройная!) для надежного срабатывания других элементов схемы. Длительность таких импульсов составит для КМОП несколько десятков или сотен наносекунд. При желании можно выделить не фронт, а спад импульса (и получить при этом на выходе «иголку» положительной полярности[23]), для этого нужно использовать элементы «ИЛИ‑НЕ». А если использовать «Исключающее ИЛИ», то можно получать положительные импульсы при каждом переключении сигнала: и по фронту и по спаду.

Все здорово, но схема уж больно громоздкая для такой простой функции – целый корпус! К тому же столь короткие импульсы очень сложно наблюдать на осциллографе. Поэтому на рис. 16.6, б и в приведены гораздо более экономичные схемы, которые делают то же самое, но с нарушением чистоты цифровых принципов, ибо являются наполовину аналоговыми. Длительность импульса на выходе схем выделения фронтов при указанных на схеме номиналах составит около 10 мкс.

А на рис. 16.6, г показано использование интегрирующей цепочки для задержки импульса на фиксированное время. Диаграмм я не привожу, т. к. работа схемы понятна – передний фронт импульса задерживается на время, необходимое для заряда конденсатора до порога срабатывания инвертора. Задний фронт импульса, соответственно, задерживается на время разряда. Однако если при этом входной импульс сравним по длительности с постоянной времени RC, то на выходе импульс может быть уменьшенной длительности, а если входной импульс еще короче – выходной может вообще пропасть, поэтому такой схемой на практике пользуются редко, предпочитая одновибраторы, о которых мы сейчас и поговорим.

 

 

Рис. 16.6. Схемы формирователей импульсов:

а – стандартная схема выделения фронтов;

б , в – схемы с использованием дифференциальных RC‑цепочек;

г – простейшая схема задержки

 

 

Одновибраторы

Одновибратор – это устройство, которое по внешнему сигналу выдает один‑единственный импульс определенной длительности, не зависящей от длительности входного импульса. Запуск происходит либо по фронту, либо по спаду входного импульса. Для одновибратора без перезапуска возникновение на входе нового перепада напряжений той же полярности во время действия выходного импульса игнорируется, для одновибратора с перезапуском длительность выходного импульса в этот момент начинает отсчитываться заново. Как и в случае мультивибраторов, существует огромное количество схемотехнических реализаций этого устройства.

Мы подробно изучим вариант схемы без перезапуска, который получается небольшой модификацией схем выделения фронта по рис. 16.6, б и в – нужно только ввести в них положительную обратную связь, которая будет фиксировать состояние выхода на время заряда конденсатора.

Схема на рис. 16.7, а работает следующим образом. В состоянии покоя на выходе схемы состояние логической единицы, т. к. вход второго (правого) элемента «И‑НЕ» заземлен через резистор R . Поскольку на входе тоже логическая единица, то на выходе первого (левого) элемента «И‑НЕ» логический ноль, и конденсатор разряжен. При возникновении на входе схемы отрицательного уровня, на выходе первого элемента типа «И‑НЕ» возникает состояние логической единицы, которое через дифференцирующую цепочку RC передается на вход второго элемента, так что на выходе схемы и, соответственно, на втором входе первого элемента оказывается логический ноль. Это состояние схемы, уже независимо от уровня входного сигнала, будет устойчиво: обратная связь как бы перехватила и зафиксировала уровень нуля на выходе на время, пока конденсатор заряжается от выхода первого элемента через резистор R . Через время, примерно равное произведению , конденсатор зарядится до порога срабатывания выходного элемента «И‑НЕ», и выход схемы скачком перейдет обратно в состояние логической единицы по выходу опять же независимо от состояния входа.

 

 

Рис. 16.7 . Одновибраторы

 

Если к этому времени по входу схемы уже установился уровень логической единицы, как бывает в большинстве случаев (одновибраторы в основном предназначены для работы с короткими импульсами на входе), то первый элемент также перебросится в начальное состояние, и конденсатор С быстро разрядится через ограничительное сопротивление 1 кОм (если оно установлено, см. далее) и входные защитные диоды второго элемента. Схема придет в начальное состояние в ожидании следующего запускающего импульса. Длительность импульса на выходе всегда будет примерно равна RC , даже в случае, если входной импульс длиннее (в этом случае конденсатор просто разрядится не сразу, а только тогда, когда закончится входной импульс). Совершенно аналогично работает схема на рис. 16.7, б , только с противоположными полярностями импульсов.

Главное применение одновибраторов – в качестве таймера, который формирует сигнал определенной длительности вне зависимости от работы всей остальной схемы. Естественно, о высокой точности выдержки времени тут говорить не приходится, но часто этого и не требуется. Например, если вы хотите ограничить по времени тревожный сигнал, подающийся с помощью устройства по рис. 16.3, то целесообразно управлять им от одновибратора, который запускается, скажем, нажатием кнопки. В одновибраторах для больших выдержек не возбраняется использовать электролитические конденсаторы, хотя даже при использовании только керамических или полимерных типов с максимальными емкостями порядка 1–3 мкФ вполне достижимы выдержки в несколько десятков секунд.

Одновибраторы с перезапуском, в которых выходной импульс в случае прихода нового импульса продлевается, мы проектировать не будем, потому что они более громоздкие, и в этом случае проще использовать готовую микросхему 561АГ1.

Возможно, вы уже сообразили, что одновибратор может служить эффективным средством подавления дребезга механических контактов (см. также главу 15 и эту главу далее), поскольку будет запускаться только от первого перепада уровней, причем даже независимо от того, пролетают подвижные контакты весь промежуток «туда‑обратно» или нет. Главным его преимуществом в этом качестве, несмотря на довольно сложную схему, является возможность использования двухвыводной кнопки, а не переключающей. Вход одновибратора при этом соединяют с питанием (в схеме рис. 16.7, а ) или с «землей» (в схеме рис. 16.7, б ) через резистор, а кнопкой замыкают этот вход, соответственно, на «землю» или на питание. Недостатком такого варианта является то, что приходится четко рассчитывать необходимую длительность импульса, иначе дребезг можно пропустить. Вторым недостатком схемы с одновибратором является неопределенность ситуации с размыканием ранее замкнутой кнопки, т. к. если кнопка удерживается в замкнутом состоянии дольше, чем длится импульс, то из‑за дребезга при размыкании одновибратор может выдать импульс повторно.

 

 


Дата добавления: 2019-02-12; просмотров: 586; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!