Простой термостат для аквариума



Простые конструкции термостатов, как мы говорили, используют релейный принцип регулирования – «включено‑выключено». Иначе такие регуляторы еще называют позиционными . ОУ здесь удобно включать по схеме компаратора (от англ. compare – сравнивать) – т. е. без собственной обратной связи. Поскольку коэффициент усиления его в таком включении огромен, то он и будет находиться в одном из двух состояний: если сигнал с задающего устройства больше сигнала датчика, на выходе ОУ будем иметь практически положительное напряжение питания, если меньше – отрицательное (или ноль, если питание однополярное).

На рис. 12.8 приведена практическая схема терморегулятора для аквариума.

 

 

Рис. 12.8. Принципиальная схема терморегулятора для аквариума

 

Устроена она, как видите, довольно просто. Датчик температуры Rt представляет собой термистор [15], т. е. элемент, сопротивление которого падает с увеличением температуры, и сигнал на инвертирующем входе ОУ также будет падать (конденсатор С1 обеспечивает сглаживание наведенных помех). С этим связан один нюанс – в рассмотренной ранее обобщенной схеме сигнал датчика возрастал, но включен он был также в инвертирующий вход.

Все дело тут в необычном устройстве выходного каскада компаратора 554САЗ (импортный аналог – LM311 в 14‑выводном DIP‑корпусе). У него в качестве оконечного усилителя используется довольно мощный n‑p‑n ‑транзистор (напряжение коллектор‑эмиттер до 40 В и ток коллектора до 50 мА), который соединяется с остальной схемой внутри корпуса только базой, а эмиттер и коллектор выведены наружу (эмиттер – вывод 2 , коллектор – вывод 9 ). На самом деле напрямую выведен только коллектор, а эмиттер подключен несколько сложнее, но это для нас не имеет значения. Если мы присоединим эмиттер к «земле», то получим так называемую схему с открытым коллектором , и именно так и делается в большинстве практических применений компаратора. Заметим, что в техническом описании компаратора LM311 фирмы National Semiconductor приведено большое количество типовых схем таких применений.

Чтобы получить на выходе напряжение, при этом следует в коллекторную цепь установить нагрузку – в простейшем случае это резистор, но можно подсоединить и обмотку реле или, скажем, лампочку. У нас нагрузкой служит входной светодиод оптоэлектронного реле – токоограничивающий резистор для него устанавливать не требуется, т. к. у данного типа (D2W202F) он уже имеется внутри реле. При на личии датчика с положительным наклоном (например, обычного медного терморезистора, мы их будем изучать в главе 13 ) следует поменять местами либо R1 и Rt, либо входы компаратора 3 и 4 .

* * *

 

Заметки на полях

Возникает вопрос – при таком выходном каскаде какой смысл приобретут понятия «инвертирующий» и «неинвертирующий» входы компаратора? Эти наименования были присвоены с учетом того, что одно из основных назначений такого типа компараторов – преобразование аналогового сигнала в логические уровни. При этом выходной транзистор включается обычным способом, с общим эмиттером и нагрузкой в цепи коллектора. Тогда названия входов обретают следующий смысл: при превышении напряжением на инвертирующем входе напряжения на неинвертирующем, на выходе (т. е. на коллекторе выходного транзистора) будет логический ноль (транзистор открыт), и наоборот. Если мы применим это рассуждение к нашему случаю, то увидим, что выходной транзистор откроется, когда температура станет ниже необходимой (т. е. когда сопротивление термистора велико). А нам это и надо – при этом реле включится и подключит нагреватель. При увеличении температуры сопротивление термистора упадет, и когда напряжение на делителе R1‑Rt станет меньше, чем на делителе R2‑R3‑R4, то транзистор закроется и отключит через реле нагреватель.

 

* * *

В данном случае целесообразно использовать именно термистор, потому что у него высокая (3 4 %/°С) крутизна, отчего и чувствительность, и помехоустойчивость системы возрастают. А характерная для термисторов нелинейность нас не волнует – в диапазоне температур для аквариума изменение крутизны датчика можно вообще не принимать во внимание, а в более широком диапазоне (как далее в схеме термостата для водонагревателя) крутизна уменьшится примерно в полтора раза при увеличении температуры на 60–70°, что просто означает некоторое уменьшение чувствительности.

Здесь можно использовать термистор любого типа (например, классический ММТ‑1 или подробно описанный в главе 13 В57164‑К) с номинальным (при 20 °C) сопротивлением от нескольких килоом до нескольких десятков килоом. При этом сопротивление резистора R1 должно быть примерно равно номинальному сопротивлению термистора при 20 °C или несколько меньше этого значения (чем оно меньше, тем хуже для термистора, т. к. он может перегреваться питающим током, однако, чем оно больше, тем меньше рабочий диапазон напряжений).

Сам датчик можно изготовить следующим образом (рис. 12.9): термистор с припаянными к нему достаточно длинными выводами помещается в металлическую или пластмассовую трубку и заливается эпоксидной смолой.

 

 

Рис. 12.9. Датчик для терморегулятора по рис. 12.8:

1 – металлическая или пластмассовая трубка; 2 – «ухо» для крепления; 3 – слой водостойкого лака; 4 – место пайки вывода термистора; 5 – термистор; 6 – эпоксидная смола; 7 – выводы

 

Для того чтобы смола не вытекала, пока не затвердеет, нужно временно залепить нижнюю часть трубки пластилином. Одновременно в трубке с одного конца закрепляется «ухо» для крепления датчика, которое можно изготовить просто из проволочной петельки. Чтобы исключить выщелачивание вредных веществ из эпоксидной смолы во время эксплуатации датчика, нужно дополнительно покрыть датчик водостойким лаком. Подойдут уретановые лаки для лакирования печатных плат, автомобильные эмали горячего отверждения (или, в крайнем случае, обычная олифа, которая имеет очень высокую водостойкость, но, к сожалению, сохнуть может при комнатной температуре неделями). Операции окраски можно избежать, если использовать вместо эпоксидной смолы силиконовый герметик, которым, однако, аккуратно заполнить внутреннюю полость трубки значительно сложнее (трубка при этом должна быть, естественно, либо пластиковая, либо нержавеющая).

Электронное реле типа D2W202F (фирмы CRYDOM) можно заменить на любое другое подобное реле или даже на простое электромеханическое, только в последнем случае нужно учитывать то, что написано далее о дребезге контактов.

Настройка регулятора сводится к тому, чтобы подобрать сопротивления R2 и R4 под конкретный экземпляр термистора. Сначала мы подсоединяем вместо них переменные резисторы, выводим движок потенциометра R3 в верхнее положение по схеме, погружаем датчик в воду с температурой 18 °C (это будет нижний предел диапазона регулировки температуры) и, изменяя величину R2, фиксируем момент срабатывания реле (можно просто подсоединить к его контактам тестер в режиме «прозвонки», но удобнее временно вместо нагрузки подсоединить маломощную лампочку накаливания). Далее погружаем датчик в воду с температурой 32 °C (верхний предел), выводим R3 в нижнее положение и подбираем R4 до срабатывания реле. При этом у нас нижний предел также «уедет», поэтому придется сделать несколько итераций, чтобы добиться нужного результата, и при этом нужно следить за температурой воды – она в обоих случаях не должна меняться от раза к разу. Чтобы не устраивать столь долгую «песню», можно просто измерить напряжение на делителе R1‑Rt при нужных температурах и рассчитать величины сопротивлений R4 и R2 заранее, а затем при необходимости их подкорректировать (хотя этого обычно не требуется – какая разница, будет у нас нижний предел 18 или 17 °C? Главное, чтобы мы его знали).

В окончательной конструкции регулировочный резистор R2 снабжается шкалой, по которой мы будем устанавливать поддерживаемую температуру. Следует учесть, что при использовании термистора шкала эта будет неравномерная – к концу промежутки между делениями будут короче, т. к. чувствительность термистора с температурой падает. Поэтому шкалу следует изготовить эмпирическим методом: полностью отлаженный термостат подключается к небольшой емкости с водой (чтобы нагревание и остывание шли не слишком долго), а затем отмечаются углы поворота движка резистора R2, которые соответствуют различным установившимся температурам – именно установившимся, а не температурам в момент срабатывания реле, т. к. они могут отличаться. Эта процедура носит название калибровки .

Кстати, а как же здесь быть с теплоизоляцией и перемешиванием, о необходимости которых «так долго говорили большевики»? Теплоизоляцией, естественно, придется пожертвовать, но при столь, небольших перепадах температур между водой и окружающей средой она и не требуется. А вот насчет перемешивания «большевики» совершенно правы – без него ничего не выйдет. Поэтому терморегулятор в аквариуме можно использовать только в сочетании с аэратором воды, который очень хорошо ее перемешивает, причем рассеиватель аэратора должен быть размещен на самом дне аквариума. При этом датчик подвешивают на половине высоты аквариума, а нагреватель – также вблизи дна.

Нагреватель указанной мощности лучше всего купить в магазинах для аквариумистов, но можно и изготовить его самостоятельно из мощного остеклованного резистора типа ПЭВ сопротивлением около 1 кОм. Мощность резистора может быть не более 5‑10 Вт – в воде коэффициент теплоотдачи возрастает во много раз. Только не забудьте, что такой нагреватель, подобно обычному кипятильнику, нельзя включать на воздухе. Выводы следует тщательно изолировать: сначала они покрываются лаком, потом изолируются термоусадочным кембриком, затем поверх него также покрываются в несколько слоев водостойким лаком или силиконовым гермехиком.

После изготовления качество изоляции следует проверить: погрузите нагреватель в теплый раствор соли и измерьте сопротивление между выводами и раствором – на всех пределах измерения сопротивления мультиметр должен показывать полный разрыв цепи.

Подчеркнем еще раз – если температура воздуха в помещении сама достигнет заданной и превысит ее, то терморегулятор наш перестанет включаться, и температура воды окажется равной температуре воздуха (точнее, она всегда будет несколько ниже ее – из‑за испарения с поверхности). Описанный термостат предназначен только для подогрева воды и стабилизации ее температуры на некотором уровне, заведомо более высоком, чем температура окружающей среды. И его использование наиболее актуально зимой, когда отопление в наших квартирах работает сами знаете как.

 

 

О гистерезисе

Во всем этом деле есть еще один нюанс. Что будет происходить в момент, когда напряжения на входах компаратора сравняются? Чувствительность у компаратора огромная, а как в сигнале датчика, так и на выводе задающего делителя всегда присутствует хоть маленькая, но помеха, и конденсатор С1 ее не устранит полностью – если даже все идеально заэкранировать, роль помехи сыграют собственные шумы компонентов схемы, которые имеются принципиально (если температура, конечно, отличается от абсолютного нуля). Поэтому в момент равенства напряжений на выходе компаратора появится «дребезг» – он будет быстро‑быстро переключаться туда‑сюда, переключая и реле тоже. В случаях, подобных нашему, при использовании в качестве исполнительного механизма электронного реле с zero‑контролем (или, скажем, транзистора), на этот дребезг можно закрыть глаза. Отсутствует дребезг и в схемах с пропорциональным регулированием, пример которого мы увидим далее. Но в других случаях нечеткое срабатывание приводит к разным неприятным последствиям: для обычного тиристорного реле (вроде самодельного из главы 22 ) это помехи, для электромеханических реле, сверх того, еще и быстрый износ контактов, да и просто далеко не услаждающий слух шум.

Для того чтобы избежать этого явления, в схему вводит так называемый гистерезис (от греческого hysteresis – отставание реакции от вызвавшего ее внешнего воздействия). На рис. 12.10 показана идея того, как это делается с помощью положительной обратной связи, охватывающей компаратор, хотя, как мы увидим далее, делать именно так необязательно.

 

 

Рис. 12.10. Схема компаратора с гистерезисом

 

Напряжение питания всей схемы в данном случае однополярное. Пусть напряжение Uвх ниже напряжения на делителе Uзад ? тогда на выходе компаратора напряжение равно положительному напряжению питания (все компараторы поддерживают полный диапазон напряжений по выходу – Rail‑to‑Rail ).

В этом случае резистор R1 шунтирует R2, и напряжение Uзад больше того значения, которое оно бы имело в отсутствие резистора R1, – при указанных на схеме номиналах и напряжении питания оно равно 5,24 В. Когда Uвх увеличится и достигнет Uзад , компаратор переключится, и напряжение на выходе станет равным нулю. Резистор R1 теперь шунтирует R3, и напряжение на делителе Uзад станет ниже – оно будет равно 4,76 В. Теперь небольшая помеха не страшна – чтобы переключиться обратно, напряжение на входе должно опуститься аж на целых 0,48 вольта. Состояние компаратора при переключении как бы фиксируется.

Величина разницы в порогах (0,48 В в данном случае) называется зоной нечувствительности . Естественно, наличие этой зоны усугубляет влияние тепловой инерции нагревателя – включение‑выключение нагревателя происходит позже, чем надо бы, и перерегулирование растет. Поэтому величину этой зоны при необходимости качественного регулирования нужно выбирать очень аккуратно. Сложность введения гистерезиса таким, если можно так выразиться, «академическим» способом в реальных схемах обусловлена тем обстоятельством, что половинки входного делителя обычно не равны друг другу, к тому же чаще всего (как в нашем случае) делитель этот есть переменное сопротивление, и зона нечувствительности будет зависеть от положения движка потенциометра.

Должен сказать, что обычные электромеханические реле сами по себе имеют гистерезисную характеристику – как мы отмечали в главе 7 , напряжение срабатывания у них может в несколько раз превышать напряжение отпускания. Так что простое снижение чувствительности компаратора (превращенного тогда в обычный ОУ с отрицательной обратной связью), казалось бы, могло бы нам в этом случае помочь. И все же оно не поможет, и дребезг будет появляться все равно, потому что выходное напряжение ОУ с наложенной на него помехой тогда станет нарастать очень медленно, и в момент достижения напряжения срабатывания реле начнет срабатывать очень неуверенно – несколько раз пытаясь сработать, но затем откатываясь назад, и издавая при этом характерное такое жужжание. Поэтому будет лучше и для нас, и для реле, если мы введем контролируемый гистерезис по всем правилам. Один из способов, как это можно сделать практически, сейчас мы и продемонстрируем.

 

 

Терморегулятор «для дома для семьи»[16]

Обычное устройство для нагревания воды в условиях отсутствия центрального горячего водоснабжения (например, в дачном домике) состоит из бака на 5‑20 л со встроенным электронагревателем (ТЭНом) мощностью 1–2 КВт. Использовать его без терморегулятора неудобно – приходится внимательно следить за тем, чтобы вода не закипела, да и получается она либо слишком горячая, либо наоборот – недогретая.

На рис. 12.11 изображена схема термостата на этот случай.

 

 

Рис. 12.11. Схема термостата для нагревания воды

 

Она только на вид кажется сложной, на самом деле отличается от схемы термостата для аквариума практически только тем, что в ней выбрано значительно более мощное электронное реле (до 10 А при естественном, без обдува, охлаждении) и введены дополнительные элементы (два маломощных электронных реле и два тумблера), в основном для обеспечения различных режимов работы. Режимы эти следующие:

□ автоматический термостатирующий;

□ автоматический однократный с отключением по достижении нужной температуры («режим электрочайника»);

□ ручной с подключением ТЭНа напрямую к сети.

Сначала отвлечемся от режимов и посмотрим, как работает основная схема регулирования – в ней есть небольшое отличие от схемы на рис. 12.8, которое заключается в том, что в схему введен резистор R4 небольшого номинала, шунтированный контактами маломощного реле К2.

После включения питания, если температура еще ниже установленной, срабатывает не только основное мощное реле К1, но и реле К2 (встроенных токограничивающих резисторов в реле этого типа нет, и с этой целью установлены резисторы R6 и R7). Контакты его замкнуты, и резистор R4 не участвует в работе схемы. По мере увеличения температуры напряжение на датчике падает, и в какой‑то момент времени выходной транзистор компаратора разрывает цепь питания К1 – нагреватель обесточивается. Одновременно отключается реле К2 и резистор R4 включается в цепь делителя R2‑R3‑R4‑R5, еще больше увеличивая разницу напряжений между выводами компаратора. По мере остывания воды напряжение на датчике повышается, и в какой‑то момент компаратор снова срабатывает, подключая нагрузку через реле К1. Контакты К2 при этом опять шунтируют резистор R4, и это тоже увеличивает разницу напряжений, но теперь «в другую сторону».

Как видите, мы получили типичную гистерезисную характеристику – хотя мы здесь и используем электронное реле с zero‑коррекцией, но коммутирует оно мощную нагрузку, и слишком частые изменения тока в маломощной деревенской сети в момент включения и выключения реле нам совершенно ни к чему. Разумеется, наличие резистора R4 несколько увеличивает нестабильность поддержания температуры – при приведенных на схеме номиналах разница между температурой включения и выключения составит от 1 до 1,5 °C (например, при установленной температуре в 35 °C нагреватель включится, когда температура упадет до 34 °C, а выключится – когда она достигнет 35,5 °C), однако нам более высокая стабильность в данном случае совершенно не требуется.

Теперь разберемся с режимами. Сначала – с режимом электрочайника, для обеспечения которого в схему введено еще одно маломощное реле КЗ, включенное, как видите, довольно хитрым образом. Если тумблер S2 находится в положении «Термостат» (т. е. контакты его замкнуты и шунтируют контакты реле КЗ), то реле КЗ никак не участвует в работе схемы. Если же его переключить в режим «Однократно», то в момент достижения нужной температуры, вместе с отключением основного реле К1, реле КЗ, ранее включенное через диод VD1 и резистор R7 в ту же коллекторную цепь выходного транзистора микросхемы, также отключается, контакты его размыкаются, и вывод 4 компаратора оказывается подключенным через датчик температуры к потенциалу «земли».

Такое состояние схемы устойчиво, и для возобновления работы в режиме стабилизации температуры необходимо либо на некоторое время отключить напряжение питания, либо тумблером S2 переключить схему в режим «Термостат». Конденсатор С2 вместе с диодом VD1 служат для «правильного» запуска схемы при включении питания. Если тумблер S2 разомкнут, то контакты реле КЗ должны замкнуться сразу после подачи напряжения питания, иначе компаратор не сработает даже при низкой температуре, и все реле так и останутся разомкнутыми. При подаче напряжения питания, как мы знаем, конденсатор представляет собой короткозамкнутый участок цепи, поэтому реле КЗ на небольшое время, пока конденсатор заряжается (примерно 100 мс), замкнет контакты. Диод VD1 на это время запирается и предохраняет от срабатывания реле К1 и К2. В случае, если температура воды в момент включения превышает установленную, такое срабатывание реле будет кратковременным – только на время зарядки конденсатора С2. Если же температура ниже требуемой, то компаратор успеет сработать, диод VD1 откроется, и все реле останутся в замкнутом состоянии до момента отключения нагрузки. Кстати, опыт эксплуатации подобного устройства показал, что наиболее популярен именно однократный режим (режим электрочайника), т. к. он позволяет экономить электроэнергию и не беспокоиться о том, что вы оставили включенный электроприбор без присмотра.

Ручной режим (резервный, на случай выхода автоматики из строя, чтобы не остаться вовсе без горячей воды) обеспечивается просто: тумблер S1 в положении «Постоянный» подает сетевое питание напрямую на нагреватель (контакты К1 при этом шунтируются, схема обесточивается, а вся система работает так, будто никакой автоматики и не существует). В положении «Автомат» сетевое напряжение переключается на блок питания автоматики, а нагреватель теперь может включаться только контактами реле. Тумблер S1, естественно, должен выдерживать рабочий ток ТЭНа. Здесь подойдет импортный переключатель В1011, рассчитанный на ток до 16 А при напряжении 250 В, или другой аналогичный. В крайнем случае можно использовать автомобильные переключатели от «Жигулей», которые выдерживают большие токи, но это не очень корректно, т. к. на напряжения до 300 В они не рассчитаны.

Когда сетевое напряжение поступает на нагрузку (неважно, через тумблер или контакты реле), горит включенная параллельно ей неоновая лампочка HI, по которой можно контролировать работу схемы. Лампочка может быть любого типа, только не забудьте, что резистор R8 должен иметь мощность не менее 0,5 Вт, т. к. работает при сетевом напряжении. Использованное симисторное реле PF240D25 (разводка его выводов на схеме не показана, все нарисовано прямо на его корпусе), вообще‑то допускает ток до 25 А, однако без принудительного охлаждения достаточно сильно греется уже при 10 А. Поэтому возможную мощность ТЭНа лучше ограничить величиной 2 кВт, а в корпусе устройства сверху и снизу обязательно должны наличествовать вентиляционные отверстия. Неплохо также, если реле К1 в рабочем положении корпуса будет расположено выше остальных деталей.

Если вы хотите добиться большей мощности, то лучше использовать аналогичное реле типа D2425 с возможностью установки на дополнительный радиатор (не ставить же, в самом деле, вентилятор, как рекомендуют производители PF240D25). Использовать при таких нагрузках электромагнитное реле вместо оптоэлектронного довольно затруднительно – придется включать мощный пускатель через промежуточное реле, и он отнюдь не будет услаждать ваш слух своим грохотом и жужжанием. А вот реле К2 и КЗ вполне можно заменить маломощными электромеханическими, например, типа РЭС‑60 или РЭС‑49. Естественно, резисторы R6 и R7 в этом случае не требуются, а вот у конденсатора С2, возможно, придется раза в два увеличить емкость для более надежного включения устройства.

В положении тумблера S1 «Автомат» сетевое напряжение поступает на простейший блок питания, сделанный по рис. 9.10. Как обычно, его можно извлечь из покупного блока со встроенной вилкой – мощности от него никакой не требуется (вся схема потребляет ток порядка 30 мА), поэтому можно выбирать любой на напряжение 10–15 В. Напряжение с него поступает на стабилизатор типа LM78L09 (в корпусе ТО‑92, его можно заменить отечественным 142ЕН8Б), откуда стабилизированное напряжение +9 В подается на питание схемы. Светодиод VD2 сигнализирует о том, что автоматика включена – его лучше выбирать зеленого свечения, чтобы обеспечить контраст с неоновой лампочкой.

При указанных на схеме номиналах термостат обеспечивает установку температуры в диапазоне примерно 35–85 градусов. Настройка его и калибровка ничем не отличаются от таковых для аквариумного термостата, кроме диапазона температур.

В процессе настройки основную нагрузку можно не подсоединять, т. к. момент срабатывания и отключения вполне можно контролировать по неоновой лампочке. Только следует учесть, что вовсе без нагрузки «неонка» может гореть даже при выключенном реле из‑за токов утечки, и вам даже может показаться, что система не работает. Тогда придется все же подключить какую‑то нагрузку – в качестве нее удобно взять лампочку накаливания или даже просто двухваттный резистор сопротивлением около 20 кОм.

С перемешиванием/теплоизоляцией здесь ситуация обратная по сравнению с аквариумом – принудительное перемешивание тут обеспечить довольно сложно, но оно как раз и не очень требуется: во‑первых, требования к точности поддержания температуры невысоки, во‑вторых, нагреватель настолько мощный, что вода сама неплохо перемешивается за счет конвекции (естественной циркуляции нагретых водных масс). А вот теплоизолировать бак для воды я настоятельно рекомендую – просто обернув его старым ватным одеялом, вы можете экономить до 70 % электроэнергии, причем это касается не только данной конструкции, но и вообще всех водонагревателей. Можно сделать и «фирменную» теплоизоляцию из упаковочного пенопласта.

В заключение отметим, что схемы для построения термостатов невысокого класса, подобных описанным, существуют, разумеется, и в интегральном исполнении. Обычно они при этом совмещены с полупроводниковым датчиком температуры, который часто имеет и отдельный выход, что обеспечивает возможность показа температуры. С такими устройствами все знакомы, например, по встроенным в компьютерные материнские платы системам контроля температуры процессора и регулирования оборотов вентилятора.

О цифровых методах регулирования температуры мы немного поговорим в конце книги, а пока краткий курс теплотехники будем считать законченным и перейдем к другой теме – измерению этой самой температуры.

 

ГЛАВА 13

Как измерить температуру?

 

Электронные термометры

 

 

– Господи, до чего же мне холодно! – вскричал Планше, как только господин его скрылся из виду.

И, торопясь согреться, он немедленно постучался у дверей одного домика.

А Дюма. Три мушкетера

 

 

Прежде чем познакомиться с методами измерения температуры, неплохо бы попытаться понять, что это такое – температура ? Вопрос не совсем дурацкий, как это может показаться на первый взгляд, потому что понятие температуры лежит в одном ряду с такими физическими абстракциями, как время, энтропия или электромагнитное поле. В отличие от последних двух, температуру мы можем ощущать физически, подобно расстоянию или массе, но на самом деле ясности в понимании сути дела это не добавляет. Так, течение времени мы тоже ощущаем, но на вопрос «что такое время?» сможет внятно ответить далеко не каждый – если вообще кто‑нибудь знает ответ. И время, и температуру в смысле их измерения постигла похожая судьба – научились это делать с достаточной точностью в исторических масштабах совсем недавно.

 

 

Основы термометрии

Определение гласит: температура есть мера внутренней энергии тела . Мельчайшие частицы (атомы и молекулы), составляющие физические тела, все время движутся либо по некоторым траекториям в пространстве (в жидкостях и газах), либо колеблются около своего положения (в твердых телах). Чем интенсивнее они движутся, тем выше температура. Если в твердом теле она достигает некоторого критического значения, то атомы‑молекулы срываются со своих мест, структура тела нарушается, и оно плавится, превращаясь в жидкость. Если повышать температуру дальше, то связи между частицами уже не могут победить возросшую интенсивность их движения, и жидкость начинает испаряться, превращаясь в газ. При высокой температуре нарушаются уже связи внутри молекул и образуется так называемая холодная плазма (например, пламя), при очень высокой – и внутри атомов, и вещество превращается в высокотемпературную плазму.

В реальности на эту упрощенную модель накладываются некоторые нюансы. Скажем, вещество может существовать при одних и тех же условиях в нескольких состояниях, например, как твердое тело в равновесии с жидкой и газообразной фазой – это так называемая тройная точка . Но нам сейчас важнее другое – из нарисованной картины следует, что должно быть такое состояние вещества, когда движения нет, все частицы стоят на месте и, следовательно, внутренняя энергия равна нулю. Это состояние существует и носит название абсолютного нуля температуры . Чему она равна при этом, вычислил теоретически еще в середине позапрошлого века ученый‑физик лорд Кельвин. Оказалось, что абсолютный ноль, он же ноль абсолютной температурной шкалы (шкалы Кельвина), отстоит от точки замерзания воды на ‑273,15 °C. При этом градусы в шкале Кельвина (°К) равны градусам в привычной шкале Цельсия (°С), где за ноль принята точка замерзания воды. Так что перевод очень прост – чтобы получить температуру в градусах Цельсия, надо из градусов Кельвина вычесть величину 273. Чтобы подчеркнуть разницу между °К и °С, первые часто обозначают большой буквой T , а вторые – маленькой t . В англоязычных странах в быту традиционно используют шкалу Фаренгейта (обозначается заглавной F ), в которой и ноль другой, и градусы меньше, поэтому пересчет относительно сложен:

 

* * *

 

Подробности

Так как на практике измерить внутреннюю энергию саму по себе невозможно, температуру измеряют по каким‑то ее внешним проявлениям. Логично для этого использовать точки фазового перехода (плавления и кипения) химически чистых веществ. Эти точки стабильны и хорошо воспроизводятся. В настоящее время принята международная практическая температурная шкала, уточненная последний раз в 1990 году (МПТШ‑90), в которой около двух десятков таких реперных (опорных) точек, охватывающих диапазон от ‑259,34 °C (тройная точка водорода) до 1084,62 °C (точка плавления меди). Точки замерзания и кипения воды, которые часто применяются для калибровки термометров на практике, ранее также относились к основным реперным точкам, но в МПТШ‑90 они вошли с оговорками[17]. Между опорными точками температуру в этой шкале определяют платиновым термометром, имеющим сопротивление ровно 100 или 10 Ом при температуре 0 °C. Сопротивление платины при повышении температуры возрастает с наклоном 0,39250 %/°С, и, хотя зависимость эта не очень линейна, она весьма хорошо воспроизводится. По методике МПТШ изготавливают эталоны температуры: национальные, первичные, вторичные и т. д. Средства измерения, сертифицированные путем непосредственного сравнения с эталоном, называют образцовыми.

Все пользовательские измерительные инструменты (и не только температуры), поступающие на прилавок, на каком‑то этапе сравнивались с образцовыми средствами. Сравнение вновь изготовленного измерителя с каким‑либо средством измерения, которое мы принимаем за образцовое, называется градуировкой или калибровкой. Строго говоря, это одно и то же, однако под градуировкой чаще понимают создание градуировочной таблицы или формулы, по которой показания прибора пересчитываются в соответствующую физическую величину, а под калибровкой – подстройку самого прибора так, чтобы он непосредственно показывал эту физическую величину. С появлением компьютерных технологий разница между градуировкой и калибровкой практически исчезла. Процедура проверки уже готового средства измерения на соответствие образцовому средству измерения называется поверкой.

 

Датчики

На практике для измерения температуры электронными методами используют в основном две разновидности датчиков: металлические термометры сопротивления и полупроводниковые датчики. Термисторы (терморезисторы) для измерения температуры применяют редко, в некоторых специфических случаях, т. к. их единственное достоинство в этом плане – высокая чувствительность – не перевешивает многочисленные недостатки, среди которых в первую очередь нелинейность и, кроме того, невысокая стабильность. Правда, существуют специальные высокостабильные миниатюрные алмазные термисторы (выполненные на основе монокристаллов искусственного алмаза), которые могут работать при температурах до 600 °C, но их температурный коэффициент всего раза в полтора выше, чем у металлов, и они используются также в специфических случаях – например, в печках лазерных принтеров. Термисторы чаще применяют в схемах регуляторов температуры (см. главы 12 и 27 ), где их нелинейность не имеет значения.

Еще один способ очень точного измерения температуры предполагает использование специальных термочувствительных кварцевых резонаторов. О них мы еще будем говорить в главе 16 , а здесь остановимся лишь на металлических и полупроводниковых датчиках, добавив вначале несколько слов про термисторы.

 

 

Термисторы

Для успешного применения термисторов стоит знать их основные свойства. Большинство так называемых NTC‑терморезисторов (от английского Negative Temperature Coefficient ) имеют падающую экспоненциальную зависимость сопротивления от температуры, которая с хорошей точностью описывается уравнением:

 

(1)

Здесь RT1 – номинальное сопротивление при температуре Т1 (обычно при 25 °C), В – коэффициент, имеющий размерность °К, который приводится в характеристиках термистора для некоторого диапазона температур, например, для 25‑100 °C. При отсутствии фирменного технического описания величину В несложно вычислить исходя из двух измеренных значений RT , а для ориентировочных расчетов его можно принять равным в пределах 3500–4500.

График, соответствующий уравнению (1), построенный по данным для конкретного термистора В57164‑К 103‑J с номинальным сопротивлением 10 кОм при 25 °C, приведен на рис. 13.1, а числовые данные, по которым он построен, сведены в табл. 13.1. Из графика мы видим, что крутизна характеристики термистора с повышением температуры снижается (ее значения приведены в третьей колонке таблицы). Эта нелинейность делает термисторы крайне неудобным средством для измерения температур, зато высокая величина крутизны (в среднем раз в десять большая, чем у металлов) очень удобна при использовании их в качестве датчика для регуляторов температуры. Температурный диапазон применения NTC‑термисторов ограничен пределами работоспособности полупроводниковых материалов (т. е. диапазоном от ‑55 до 125 °C).

 

 

Рис. 13.1. Температурная характеристика NTC‑термистора  

 

 

Еще одно свойство NTC‑термисторов надо всегда иметь в виду при их практическом применении – из‑за отрицательного температурного коэффициента, включение термистора в цепь питания напрямую, без резистора, ограничивающего ток, может спровоцировать лавинообразное возникновение эффекта положительной обратной связи. Нагрев термистора приводит к падению его сопротивления, отчего ток через него увеличивается, в свою очередь, увеличивая нагрев еще больше, и если ток не ограничен, то термистор в конце концов попросту расплавится. Потому напрямую к источнику питания термисторы подключать не рекомендуется, а предельная выделяющаяся мощность для обычных «таблеточных» конструкций должна быть ограничена на уровне нескольких десятков, максимум сотен милливатт.

 

 

Металлические датчики

Фирменные термометры сопротивления представляют собой обычный резистор из металлической – медной или платиновой[18] – проволоки. Платиновые датчики (ТСП, термометр сопротивления платиновый) наиболее стабильны и употребляются для высокоточных измерений, но они обладают заметной нелинейностью, поэтому значения температуры приходится рассчитывать по таблицам (см., например, [2]). Использование меди более практично – у нее зависимость сопротивления от температуры наиболее близка к линейной в широком диапазоне температур. В диапазоне от ‑50 до +100 °C погрешность за счет нелинейности в пересчете на температуру не превысит 0,1 °C. Сопротивление датчиков промышленного изготовления точно подогнано под стандартные 10, 50 или 100 Ом. Платиновые датчики используют в диапазоне от ‑260 до +1100 °C, а медные (ТСМ) от ‑200 до +200 °C. Доступность меди приводит к искушению изготовить такой датчик самому, и в большинстве случаев это совершенно не возбраняется, хотя прецизионный термометр на самодельном датчике, конечно, не получится (это тот случай, когда структура металла имеет значение – в отличие от аудиокабелей, см. главу 8 ).

 

 

Полупроводниковые датчики

Полупроводниковые датчики удобно использовать во всех случаях, когда не требуется высокая точность. Простейший полупроводниковый датчик температуры – обычный кремниевый диод или транзистор в диодном включении (когда коллектор соединен с базой). Пресловутое прямое падение напряжения на диоде, равное 0,6 В, имеет почти линейный отрицательный температурный коэффициент, равный приблизительно 2,3 мВ/°С. Все промышленные полупроводниковые датчики тем или иным способом используют этот эффект.

Фирменные полупроводниковые датчики делятся на две разновидности: с аналоговым и цифровым выходом. Аналоговые датчики (DS60, МАХ6605) имеют обычно три вывода (питание, общий и выход), а цифровые иногда всего два (DS1721), питаясь от сигналов запроса, поступающих с внешнего контроллера (см. главу 11 ).

Следует особо отметить довольно точные датчики ТМР35/ТМР36/ТМР37 фирмы Analog Devices (аналоги: LM135/235/335 фирмы ST Microelectronics или 1019ЕМ1 отечественного исполнения), которые включаются подобно диоду, но несут третий вывод для подстройки температурного коэффициента, имеющего величину аж 10 мВ/°С, причем с положительным наклоном.

Полупроводниковым датчикам, как правило, свойственны погрешности заводской установки порядка 1–2 °C, и иногда встречающееся в характеристиках определение «прецизионный», видимо, относится к повышенной их стабильности – после соответствующей калибровки погрешности снижаются до порядка долей градуса. Впрочем, как показал опыт, специальные цифровые датчики со встроенным микроконтроллером, позволяющим выдавать «наружу» непосредственно физическую величину в градусах, довольно точны, и часто дополнительной калибровки не требуют (см. главу 22 ).

* * *

 

Средства калибровки

В домашней практике для поверки разрабатываемых самостоятельно приборов лучше всего использовать ртутный лабораторный термометр с делениями не крупнее одной‑двух десятых градуса (погрешность таких термометров, однако, может быть выше и составлять 0,2 и даже 0,5 °C). Основной диапазон – от 0 до 50 °C, поэтому может потребоваться еще один термометр для диапазона до 100 °C, а также в отрицательной области. Но за неимением таковых, конечно, можно обойтись и бытовыми спиртовыми или цифровыми термометрами (последние должны иметь выносной датчик), только не следует забывать про их достаточно высокую погрешность, которая может составлять 1–2 °C.

Категорически не рекомендуется применять для калибровки бытовые металлические термометры расширения (с такой спиралькой, соединенной со стрелочкой, они всем знакомы по бытовым газовым или электрическим духовкам) – они могут ошибаться на десятки градусов. Если требуется калибровка при повышенных температурах, то лучше использовать термометры на основе термопары, которыми комплектуются некоторые мультиметры. Правда, последние решительно не годятся для обычного диапазона температур, по причине, которую мы рассмотрим далее.

 


Дата добавления: 2019-02-12; просмотров: 323; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!