Устройство плавного включения ламп накаливания



Лампы накаливания практически всегда перегорают при включении. Это происходит потому, что сопротивление вольфрамового волоска, как и любого металла, зависит от температуры – с повышением температуры оно повышается, причем из‑за огромного перепада температур (порядка 2000 градусов) сопротивление холодной лампы может быть в десятки раз ниже, чем горящей. Например, у лампы 100 Вт, 220 В рабочее сопротивление должно быть почти 500 Ом, однако измерение с помощью мультиметра у выкрученной из цоколя лампы покажет величину меньше 40 Ом. Большой начальный ток и приводит в выходу лампы из строя. Целесообразно при включении постепенно (в течение 0,5–1 с) повышать напряжение – это может продлить срок службы лампы в несколько раз.

Такое устройство – триммер – легко соорудить из схемы ручного регулятора в любом из ее вариантов путем небольшой переделки узла управления. Поскольку это устройство не будет содержать органов ручного управления, то его можно питать целиком прямо от сети без оговорок. Оптрон, тем не менее, мы сохраним – как удобное устройство управления. Переделки сведутся к тому, что мы заменим цепочку R1‑R2 узлом, показанным на рис. 10.6.

 

 

Рис. 10.6. Переделка узла управления для устройства плавного включения ламп накаливания

 

Здесь конденсатор С2 (нумерация компонентов сохранена в соответствии с рис. 10.3) после включения питания заряжается через резистор R1 с постоянной времени RC . Так как изначально конденсатор разряжен, то тока через светодиод оптрона не будет, и генератор не работает – темновое сопротивление фоторезистора слишком велико. По мере заряда конденсатора напряжение на выходе эмиттерного повторителя будет возрастать, ток через оптрон будет увеличиваться, и в течение примерно 1 с он возрастет настолько, что фаза управляющих импульсов сдвинется к самому началу полупериода, и яркость горения лампы станет максимальной. После выключения питания С2 разрядится через цепочку переход база‑эмиттер‑R2‑светодиод оптрона, и схема придет в начальное состояние. Питание управляющего узла должно быть положительным, поэтому мы его питаем через диод VD2.

Удобством в этой схеме является то, что особо тонкой настройки она не требует, Соберите ее при указанных номиналах и сразу включите в сеть. Если яркость растет слишком быстро или, наоборот, медленно – подберите резистор R1. Если же она вообще не достигает максимальной, уменьшите значение резистора R2.

Подобных схем триммеров очень много в радиолюбительской литературе и в Сети (см., например, сайт Shema.ru ), имеются и более компактные конструкции, в том числе такие, которые представляют собой двухполюсник и могут подключаться в разрыв цепи нагрузки. Естественно, схемы подобных регуляторов выпускают и в интегральном исполнении.

* * *

 

Заметки на полях

Набирающие популярность энергосберегающие лампы (как обычные люминесцентные, так и светодиодные) таким способом регулировать, конечно, нельзя. Тиристорные триммеры в цепи этих ламп попросту откажутся работать и могут даже вывести лампу из строя. Хотя и есть специальные системы включения таких ламп, совместимые с триммерными регуляторами, но, в общем случае, учитывая, что лампы эти питаются фактически постоянным напряжением, то и регулируются они совсем другим способом – с помощью изменения времени включенного состояния (скважности высокочастотных питающих импульсов). Городить для них самодеятельные регулирующие конструкции не имеет смысла – они все равно окажутся крупнее, дороже и хуже тех, что доступны в продаже.

 

Помехи

В заключение главы о мощной нагрузке нужно прояснить еще один момент, связанный с помехами. В начале главы я долго распинался по поводу того, что резко выключать мощную нагрузку в сети нельзя, и что оптоэлектронные реле даже имеют специальные средства для отслеживания момента перехода через ноль. Между тем, все рассмотренные схемы с фазовым управлением именно это и делают. Потому, если вы включите такой регулятор напрямую в сеть, то помех не избежать – как электрических по проводам сети, так и электромагнитных, распространяющихся в пространстве, и чем мощнее нагрузка, тем больше эти помехи. Особенно чувствительны к этому делу АМ‑приемники – мощный регулятор может давить передачи ВВС не хуже советских глушилок. Для того чтобы свести помехи к минимуму, необходимо, во‑первых, заземлить корпус прибора, а во‑вторых, на входе питания устройства вместе с нагрузкой поставить LC ‑фильтр. Это относится и к регуляторам в интегральном исполнении.

* * *

 

Заметки на полях

Внимательный читатель, несомненно, давно уже задает вопрос: если тиристор при отсутствии тока через него выключается, то как можно запустить тиристорную схему в момент перехода напряжения через ноль? Отвечаю: естественно, никак. Поэтому схема zero‑коррекции на самом деле запускает мощный тиристор не точно в момент равенства анодного напряжения нулю, а тогда, когда ток через него уже достигает некоторой небольшой, но конечной величины. Практически это обеспечить несложно – надо дождаться момента очередного перехода через ноль и сразу запустить генератор открывающих импульсов на достаточно высокой частоте. Тиристор «сам выберет» из последовательности импульсов тот, при котором «уже можно открываться».

 

* * *

Для заземления корпус, естественно, должен быть металлический или металлизированный изнутри. В выигрышном положении окажутся те, кто будет изготавливать корпуса самостоятельно из стеклотекстолита, по технологии, изложенной в главе 5 , – у них уже есть прекрасный экран из медной фольги, достаточно только припаять провод заземления в любом удобном месте на внутренней стороне корпуса и присоединить его к желто‑зелененькому третьему проводу в сетевой вилке.

Если же корпус пластмассовый, то его нужно изнутри оклеить алюминиевой фольгой потолще (предназначенная для применения в микроволновых печах, конечно, не подойдет). Надежно обеспечить контакт вывода заземления с таким экраном можно, приклеив зачищенный на несколько сантиметров провод широким скотчем или соорудив прижимной контакт из упругой бронзы (например, из контакта старого мощного реле).

На рис. 10.7 приведены два варианта построения развязывающего LC‑фильтра. Второй вариант (на рисунке внизу) более «продвинутый». Для изготовления дросселя (так называют индуктивности, если они служат для фильтрации высоких частот в шинах питания и в некоторых других случаях) нужно взять ферритовое кольцо марки 600‑1000HH диаметром 20–30 мм и намотать на него виток к витку провод МГШВ сечением около 1 мм2 – сколько уместится. Во втором варианте фильтра дроссели L1 и L2 можно объединить, намотав их на одном кольце, – причем если помехи будут подавляться плохо, то надо поменять местами начало и конец одной из обмоток. Можно использовать и готовые дроссели подходящей мощности.

 

 

Рис. 10.7. Схемы фильтров сетевого питания для подавления помех

 

Если нагрузка совсем маломощная (до 20 Вт), то дроссели можно в крайнем случае заменить резисторами в 10–15 Ом мощностью не менее 2 Вт. Конденсаторы – любые неполярные на напряжение не менее 400 В, среднюю точку их во втором варианте нужно подсоединить к настоящему заземлению (т. е. к уже заземленному корпусу). Если таковое отсутствует, то все равно надо присоединить эту точку к корпусу прибора, но без настоящего заземления работа фильтра заметно ухудшится – фактически он превратится в несколько улучшенный первый вариант.

 

ГЛАВА 11

Слайсы, которые стали чипами

 

О микросхемах

 

 

Ему предстояло увидеть наяву тот заветный сундук, который он двадцать раз представлял в своих грезах.

А. Дюма . Три мушкетера

 

 

Самые первые микросхемы были совсем не такими, как сейчас. Они изготавливались гибридным способом: на изолирующую подложку напылялись алюминиевые проводники, приклеивались маленькие кристаллики отдельных транзисторов и диодов, малогабаритные резисторы и конденсаторы, и затем все это соединялось в нужную схему тонюсенькими золотыми проволочками – вручную, точечной сваркой под микроскопом. Можно себе представить, какова была цена таких устройств, которые назывались гибридными микросхемами. К гибридным микросхемам относятся и некоторые современные типы – к примеру, оптоэлектронные реле – но, конечно, сейчас выводы отдельных деталей уже вручную не приваривают.

Ведущий специалист и один из основателей компании Fairchild Semiconductor Роберт Нойс позднее признавался, что ему стало жалко работников, терявших зрение на подобных операциях, и в 1959 году он выдвинул идею микросхемы – «слайса», или «чипа» (slice – ломтик, chip – щепка, осколок), где все соединения наносятся на кристалл прямо в процессе производства. Несколько ранее аналогичную идею выдвинул сотрудник Texas Instruments Джек Килби, однако опоздавший Нойс, химик по образованию, разработал детальную технологию изготовления (это была так называемая планарная технология с алюминиевыми межсоединениями, которая часто используется и по сей день). Спор о приоритете между Килби и Нойсом продолжался в течение десяти лет, и в конце концов победила дружба – было установлено считать Нойса и Килби изобретателями микросхемы совместно. В 2000 году Килби (Нойс скончался в 1990‑м) получил за изобретение микросхемы Нобелевскую премию (одновременно с ним, но за достижения в области оптоэлектроники, ее получил и российский физик Жорес Алферов).

* * *

 

Fairchild Semiconductor  

Компания Fairchild Semiconductor в области полупроводниковых технологий стала примерно тем, чем фирма «Маркони» в области радио или фирма Xerox в области размножения документов. Началось все еще с ее рождением: восемь инженеров, уволившихся в 1957 году из основанной изобретателем транзистора Уильямом Шокли компании Shockley Semiconductor Labs , обратились к начинающему финансисту Артуру Року – единственному, кому их идеи показались интересными. Рок нашел компанию из холдинга Шермана Файрчайлда, которая согласилась инвестировать основную часть из требуемых 1,5 миллиона долларов, и с этого момента принято отсчитывать появление нового способа финансирования инновационных проектов – венчурных (т. е. «рисковых») вложений, что в дальнейшем позволило родиться на свет множеству компаний, названия которых теперь у всех на слуху.

Следующим достижением Fairchild стало изобретение микросхем Робертом Нойсом, и первые образцы многих используемых и поныне их разновидностей были созданы именно тогда (например, в одном из первых суперкомпьютеров на интегральных схемах, знаменитом ILLIAC IV, были установлены микросхемы памяти производства Fairchild ). А в 1963 году отдел линейных интегральных схем в Fairchild возглавил молодой специалист по имени Роберт Видлар, который стал «отцом» интегральных операционных усилителей, основав широко распространенные и поныне серии, начинающиеся с букв μ и LM (мы о нем уже упоминали в главе 9 в связи с интегральными стабилизаторами питания). Логические КМОП‑микросхемы (см. главу 15 ) изобрел в 1963 году также сотрудник Fairchild Фрэнк Вонлас, получивший на них патент № 3 356 858.

 

Intel и AMD  

В 1965 году знаменитый Гордон Мур, тогда – один из руководителей Fairchild , входивший вместе с Нойсом в восьмерку основателей, сформулировал свой «закон Мура» о том, что производительность и число транзисторов в микросхемах удваиваются каждые 1,5 года – этот закон фактически соблюдается и по сей день! В 1968 году Нойс с Муром увольняются из Fairchild и основывают фирму, название которой теперь знает каждый школьник: Intel . Инвестором новой компании стал все тот же Артур Рок. А другой работник Fairchild , Джереми Сандерс, в следующем, 1969 году основывает фирму почти столь же известную, как и Intel , – ее «заклятого друга» AMD .

 

 

 

Рис. 11.1. Изобретатели микросхемы Роберт Нойс (Robert Noyce), 1927–1990 (слева) и Джек Килби (Jack St. Clair Kilby), 1923–2005

* * *

Что же дало использование интегральных микросхем, кроме очевидных преимуществ типа миниатюризации схем и сокращения количества операций при проектировании и изготовлении электронных устройств?

Рассмотрим прежде всего экономический аспект. Первым производителям чипов это было еще не очевидно, но экономика производства микросхем отличается от экономики других производств. Одним из первых, кто понял, как именно нужно торговать микросхемами, был уже упомянутый Джереми Сандерс (тогда – сотрудник Fairchild , впоследствии – руководитель компании AMD на протяжении более трех десятилетий).

Пояснить разницу можно на следующем примере. Если вы закажете архитектору проект загородного дома, то стоимость этого проекта будет сравнима со стоимостью самого дома. Даже если вы по этому проекту построите сто домов, то вы не так уж сильно выгадаете на стоимости каждого – стоимость проекта поделится на сто, но выгода ваша будет измеряться процентами, потому что построить дом дешевле, чем стоят материалы и оплата труда рабочих, нельзя, а они‑то и составляют значительную часть стоимости строительства. В производстве же микросхем все иначе: цена материалов, из которых они изготовлены, в пересчете на каждый «чип» настолько мала, что она составляет едва ли единицы процентов от стоимости конечного изделия. Поэтому основная часть себестоимости чипа складывается из стоимости его проектирования и стоимости самого производства, на котором они изготавливаются, – фабрика для выпуска полупроводниковых компонентов может обойтись в сумму порядка 2–4 миллиардов долларов. Ясно, что в этой ситуации определяющим фактором стоимости микросхемы будет их количество – обычно, если вы заказываете меньше миллиона экземпляров, то с вами даже разговаривать не станут, а если вы будете продолжать настаивать, то один экземпляр обойдется вам во столько же, сколько и весь миллион. Именно массовость производства приводит к тому, что сложнейшие схемы, которые в дискретном виде занимали бы целые шкафы и стоили бы десятки и сотни тысяч долларов, продаются дешевле томика технической документации к ним.

Вторая особенность экономики производства микросхем – то, что их цена мало зависит от сложности. Микросхема простого операционного усилителя содержит несколько десятков транзисторов, микросхема микроконтроллера – несколько десятков или сотен тысяч, однако их стоимости по меньшей мере сравнимы. Эта особенность тоже не имеет аналогов в дискретном мире – с увеличением сложности обычной схемы ее цена растет пропорционально количеству использованных деталей. Единственный фактор, который фактически ведет к увеличению себестоимости сложных микросхем по сравнению с более простыми (кроме стоимости проектирования), – это процент выхода годных изделий, который может снижаться при увеличении сложности. Если бы не это, то стоимость Intel Core i7 не намного бы превышала стоимость того же операционного усилителя. Однако в Core i7 , извините, несколько сотен миллионов транзисторов! Это обстоятельство позволило проектировщикам без увеличения стоимости и габаритов реализовать в микросхемах такие функции, которые в дискретном виде было бы реализовать просто невозможно или крайне дорого.

Кстати, выход годных – одна из причин того, что кристаллы микросхем такие маленькие. В некоторых случаях разработчики даже рады были бы увеличить размеры, но тогда резко снижается и выход. Типичный пример такого случая – борьба производителей цифровых фотоаппаратов за увеличение размера светочувствительной матрицы. Матрицы размером с пленочный кадр (24x36 мм) и на момент первого издания этой книги, и сейчас имеют только лучшие (и самые дорогие) модели профессиональных фотокамер.

Но, конечно, тенденция к миниатюризации имеет и другую причину: чем меньше технологические нормы, тем меньше потребляет микросхема и тем быстрее она работает. Простые логические микросхемы КМОП серии 4000В (см. главу 15 ) выпускали в процессе с технологическими нормами 4 мкм, микропроцессор i8086 – по технологии 3 мкм, и работали они на частотах в единицы, в лучшем случае – десятки мегагерц. Процессор Pentium 4 с ядром Willamette (нормы 0,18 мкм) имел тепловыделение до 72 Вт, a Pentium 4 с ядром Northwood (нормы 0,13 мкм) – уже 41 Вт. В настоящее время большая часть микропроцессоров выпускается по нормам 0,032‑0,045 мкм, освоен порог в 0,022 мкм (22 нм), проектируются процессы 14 и даже 10 нм. Вспомните, что диаметр единичного атома имеет порядок 0,2–0,3 нм, так что по ширине дорожки на кристалле, изготовленном с такими нормами, укладывается всего полсотни атомов кремния!

Еще одна особенность микросхем – надежность. Дискретный аналог какого‑нибудь устройства вроде аналого‑цифрового преобразователя содержал бы столько паек, что какая‑нибудь в конце концов обязательно оторвалась. Между тем, если вы эксплуатируете микросхему в штатном режиме, то вероятность ее выхода из строя измеряется миллионными долями единицы. Это настолько редкое явление, что его можно практически не учитывать на практике, – если у вас сломался какой‑то прибор, ищите причину в контактах переключателей, в пайках внешних выводов, в заделке проводов в разъемах – но про возможность выхода из строя микросхемы забудьте. Разумеется, это, повторяю, относится к случаю эксплуатации в штатном режиме – если вы подали на микрофонный вход звуковой карты напряжение 220 В, конечно, в первую очередь пострадает именно микросхема. Но сами по себе они практически не выходят из строя никогда.

 

 


Дата добавления: 2019-02-12; просмотров: 225; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!