Основные параметры стабилизаторов.

Классификация. Основные термины и определения.

Отечественная промышленность выпускает большое разнообразие микросхем для источников вторичного электропитания. Например:

ЕВ- выпрямители;

ЕК- стабилизаторы напряжения;

ЕМ- импульсные преобразователи;

ЕН- стабилизаторы напряжения непрерывные;

ЕП- прочие;

ЕС- схемы источников вторичного электропитания;

ЕТ- стабилизаторы тока;

ЕУ- для управления импульсными стабилизаторами напряжения;

Источники вторичного электропитания являются одной из разновидностей функциональных узлов средств вторичного электропитания РЭА, которые подключаются к источникам первичного электропитания, преобразуют их переменное или постоянное напряжение в ряд выходных напряжений различных номиналов как постоянного, так и переменного тока с характеристиками, обеспечивающими нормальную работу РЭА в заданных режимах.

Напряжение источников входной электроэнергии переменного или постоянного тока, от которых питаются источники вторичного электропитания, в силу различных причин имеют широкие пределы изменения номинала ± 20 - 30 %. Кроме того в процессе работы изменяется ток, потребляемый аппаратурой. Поэтому большинство ИВЭ содержат в своем составе стабилизаторы напряжения и тока как простейшие параметрические, так и более сложные - компенсационные.

Источники вторичного электричества классифицируются по многим признакам:

 -по виду входной электроэнергии;

 -по входной мощности;

 -по виду выходной электроэнергии т. д. ;

Для нас наиболее важна классификация по способу стабилизации напряжения и по методу стабилизации напряжения. По способу стабилизации напряжения: ИВЭ с непрерывным регулированием и стабилизаторы с импульсным регулированием. По методу стабилизации напряжения:

параметрические и компенсационные стабилизаторы источников вторичного электропитания.

В параметрическом стабилизаторе отсутствует цепь обратной связи и стабилизация выходного напряжения осуществляется за счёт нелинейных элементов (НЭ), входящих в его состав (Рис. 1). Параметрический стабилизатор, обладающий минимальным числом элементов, используется при малых токах нагрузки (единицы миллиампер) и невысоких требованиях к КПД. В компенсационном стабилизаторе стабилизация выходного напряжения осуществляется за счёт воздействия изменения выходного напряжения (тока) на его регулирующее устройство (РЭ) через цепь ОС.

Компенсационные стабилизаторы могут выполняться с последовательным (Рис. 2) или с параллельным включением РЭ (Рис. 3) относительно нагрузки.

Рис. 1 Структурная схема параметрического стабилизатора напряжения

Рис. 2 Структурная схема непрерывного последовательного стабилизатора.

Рис. 3 Структурная схема непрерывного параллельного стабилизатора.

 Обозначения на рис. 1-3: РЭ - регулирующий элемент; НЭ - нелинейный элемент; УПТ - усилитель постоянного тока; ИЭ - измерительный элемент, в который входит сравнивающий делитель и источник опорного напряжения.

Компенсационные стабилизаторы параллельного типа по КПД уступают последовательным стабилизаторам и применяются в основном при малых изменениях тока нагрузки. Достоинством этих стабилизаторов является неизменный входной ток, т.е. отсутствует реакция первичного источника и входного фильтра на импульсное изменение тока нагрузки стабилизатора. Кроме того, параллельные стабилизаторы не боятся короткого замыкания в нагрузке.

 

Основные параметры стабилизаторов.

1. Номинальное выходное напряжение стабилизатора UН, В; и пределы его изменения: верхний UН.МАКС и нижний UН.МИН.

2. Пределы регулировки выходного напряжения стабилизатора: верхний UН,РЕГ,МАКС, нижний UН.РЕГ.МИН, В.

3. Номинальное значение тока нагрузки стабилизатора и пределы его изменения: максимальное IН.МАКС и минимальное IН.МИН.

4. Нестабильность выходного напряжения, которое определяется как отношение изменения выходного напряжения DUН к номинальному значению выходного значения стабилизатора UН при заданных изменениях входного напряжения или тока нагрузки.

Коэффициент нестабильности по напряжению dUН, % определяется при заданном изменении входного питающего напряжения на величину DUВХ и IН=const.

Ф. 1

Коэффициент нестабильности по току определяется при заданном изменении тока нагрузки на величину DIН=IН.МАКС-IН.МИН при DUВХ=const.

 

Ф. 2

Часто в справочниках используются коэффициенты нестабильности по напряжению и току с другой размерностью %/В или %/А.

Для получения коэффициентов нестабильности с такой размерностью предыдущие формулы перепишутся следующим образом:

Коэффициент нестабильности по напряжению %/В.

Ф. 3

Коэффициент нестабильности по току %/А.

Ф. 4

5. Наряду с коэффициентом нестабильности для характеристики стабилизирующих свойств используется коэффициент стабилизации по напряжению КСТ, который показывает, во сколько раз относительное изменение входного напряжения больше относительного изменения выходного напряжения при неизменном токе нагрузки:

Ф. 5

6. Коэффициент подавления пульсаций - отношение переменной составляющей на входе стабилизатора и переменной составляющей на выходе стабилизатора:

Ф. 6

7. Внутреннее сопротивление постоянному току - отношение изменения выходного напряжения к медленному изменению выходного тока при постоянном входном напряжении:

8. Внутреннее динамическое сопротивление, которое определяет импульсное изменение выходного напряжения стабилизатора DUНИ при импульсном изменении тока нагрузки DIНИ при постоянном входном напряжении:

9. Температурный коэффициент напряжения aН, %/°С (ТКН) показывает изменение выходного напряжения стабилизатора при изменении температуры окружающей среды ТСР на 1°С:

или в мВ/°С:

10. Коэффициент полезного действия стабилизатора hСТ определяется как отношение полезной мощности, отдаваемой в нагрузку, к мощности, потребляемой от источника входной электроэнергии:

 

Триггеры

 

Триггер – это логическая схема с положительной обратной связью, могущая неограниченно долго находиться в одном из двух устойчивых состояний ( 0 и 1 ) которые обеспечиваются положительной обратной связью а не входным сигналом. Триггер скачком, лавинообразно меняет одно состояние на другое под воздействием входного сигнала.

Триггеры делятся на симметричные и несимметричные (триггеры Шмитта). Триггеры Шмитта рассматриваются как импульсные устройства, а симметричные делятся :

1. По способу записи информации на:

а) асинхронные,

б) синхронные (тактируемые).

2. По способу управления записью информации на:

а) статические,

б) динамические – по фронту переднему или заднему,

в) двухступенчатые – по двум фронтам.

3. По способу организации логической связи :

а) элементарные с раздельной установкой 0 и 1 – RS–триггеры

б) с приемом информации по одному входу – D–триггеры

в) со счетным входом – T–триггеры

г) универсальные с раздельной установкой 0 и 1 – JK–триггеры

д) комбинированные ( смешанные )

 

Общие сведения

Аналого-цифровые преобразователи (АЦП) являются устройствами, которые принимают входные аналоговые сигналы и генерируют соответствующие им цифровые сигналы, пригодные для обработки микропроцессорами и другими цифровыми устройствами.

Принципиально не исключена возможность непосредственного преобразования различных физических величин в цифровую форму, однако эту задачу удается решить лишь в редких случаях из-за сложности таких преобразователей. Поэтому в настоящее время наиболее рациональным признается способ преобразования различных по физической природе величин сначала в функционально связанные с ними электрические, а затем уже с помощью преобразователей напряжение-код - в цифровые. Именно эти преобразователи имеют обычно в виду, когда говорят об АЦП.

Процедура аналого-цифрового преобразования непрерывных сигналов, которую реализуют с помощью АЦП, представляет собой преобразование непрерывной функции времени U(t), описывающей исходный сигнал, в последовательность чисел {U'(tj)}, j=0,1,2,:, отнесенных к некоторым фиксированным моментам времени. Эту процедуру можно разделить на две самостоятельные операции. Первая из них называется дискретизацией и состоит в преобразовании непрерывной функции времени U(t) в непрерывную последовательность {U(tj)}. Вторая называется квантованием и состоит в преобразовании непрерывной последовательности в дискретную {U'(tj)}.

В основе дискретизации непрерывных сигналов лежит принципиальная возможность представления их в виде взвешенных сумм

, (1)

где aj - некоторые коэффициенты или отсчеты, характеризующие исходный сигнал в дискретные моменты времени; fj(t) - набор элементарных функций, используемых при восстановлении сигнала по его отсчетам.

Наиболее распространенной формой дискретизации является равномерная, в основе которой лежит теорема отсчетов. Согласно этой теореме в качестве коэффициентов aj следует использовать мгновенные значения сигнала U(tj) в дискретные моменты времени tj=jDt, а период дискретизации выбирать из условия

Dt=1/2Fm , (2)

где Fm - максимальная частота спектра преобразуемого сигнала. При этом выражение (1) переходит в известное выражение теоремы отсчетов

, (3)

Для сигналов со строго ограниченным спектром это выражение является тождеством. Однако спектры реальных сигналов стремятся к нулю лишь асимптотически. Применение равномерной дискретизации к таким сигналам приводит к возникновению в системах обработки информации специфических высокочастотных искажений, обусловленных выборкой. Для уменьшения этих искажений необходимо либо увеличивать частоту дискретизации, либо использовать перед АЦП дополнительный фильтр нижних частот, ограничивающий спектр исходного сигнала перед его аналого-цифровым преобразованием.

В общем случае выбор частоты дискретизации будет зависеть также от используемого в (1) вида функции fj(t) и допустимого уровня погрешностей, возникающих при восстановлении исходного сигнала по его отсчетам. Все это следует принимать во внимание при выборе частоты дискретизации, которая определяет требуемое быстродействие АЦП. Часто этот параметр задают разработчику АЦП.

Рассмотрим более подробно место АЦП при выполнении операции дискретизации.

Для достаточно узкополосных сигналов операцию дискретизации можно выполнять с помощью самих АЦП и совмещать таким образом с операцией квантования. Основной закономерностью такой дискретизации является то, что за счет конечного времени одного преобразования и неопределенности момента его окончания, зависящего в общем случае от параметров входного сигнала, не удается получить однозначного соответствия между значениями отсчетов и моментами времени, к которым их следует отнести. В результате при работе с изменяющимися во времени сигналами возникают специфические погрешности, динамические по своей природе, для оценки которых вводят понятие апертурной неопределенности, характеризующейся обычно апертурным временем.

Апертурным временем ta называют время, в течение которого сохраняется неопределенность между значением выборки и временем, к которому она относится. Эффект апертурной неопределенности проявляется либо как погрешность мгновенного значения сигнала при заданных моментах измерения, либо как погрешность момента времени, в который производится измерение при заданном мгновенном значении сигнала. При равномерной дискретизации следствием апертурной неопределенности является возникновение амплитудных погрешностей, которые называются апертурными и численно равны приращению сигнала в течение апертурного времени.

Если использовать другую интерпретацию эффекта апертурной неопределенности, то ее наличие приводит к "дрожанию" истинных моментов времени, в которые берутся отсчеты сигнала, по отношению к равноотстоящим на оси времени моментам. В результате вместо равномерной дискретизации со строго постоянным периодом осуществляется дискретизация с флюктуирующим периодом повторения, что приводит к нарушению условий теоремы отсчетов и появлению уже рассмотренных апертурных погрешностей в системах цифровой обработки информации.

Такое значение апертурной погрешности можно определить, разложив выражение для исходного сигнала в ряд Тейлора в окрестностях точек отсчета, которое для j-й точки имеет вид

и дает в первом приближении апертурную погрешность

, (4)

где ta - апертурное время, которое для рассматриваемого случая является в первом приближении временем преобразования АЦП.

Обычно для оценки апертурных погрешностей используют синусоидальный испытательный сигнал U(t)=Umsinwt, для которого максимальное относительное значение апертурной погрешности

DUa/Um=wta.

Если принять, что для N-разрядного АЦП с разрешением 2-N апертурная погрешность не должна превышать шага квантования (рис. 1), то между частотой сигнала w, апертурным временем ta и относительной апертурной погрешностью имеет место соотношение

1/2N=wta

Для обеспечения дискретизации синусоидального сигнала частотой 100 кГц с погрешностью 1% время преобразования АЦП должно быть равно 25 нс. В то же время с помощью такого быстродействующего АЦП принципиально можно дискретизировать сигналы, имеющие ширину спектра порядка 20 МГц. Таким образом, дискретизация с помощью самого АЦП приводит к существенному расхождению требований между быстродействием АЦП и периодом дискретизации. Это расхождение достигает 2...3 порядков и сильно усложняет и удорожает процесс дискретизации, так как даже для сравнительно узкополосных сигналов требует весьма быстродействующих АЦП. Для достаточно широкого класса быстро изменяющихся сигналов эту проблему решают с помощью устройств выборки-хранения, имеющих малое апертурное время.

В настоящее время известно большое число методов преобразования напряжение-код. Эти методы существенно отличаются друг от друга потенциальной точностью, скоростью преобразования и сложностью аппаратной реализации. На рис. 2 представлена классификация АЦП по методам преобразования.

В основу классификации АЦП положен признак, указывающий на то, как во времени разворачивается процесс преобразования аналоговой величины в цифровую. В основе преобразования выборочных значений сигнала в цифровые эквиваленты лежат операции квантования и кодирования. Они могут осуществляться с помощью либо последовательной, либо параллельной, либо последовательно-параллельной процедур приближения цифрового эквивалента к преобразуемой величине.

Общие сведения

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

По виду выходного сигнала: с токовым выходом и выходом в виде напряжения

По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода

По числу ЦАП на кристалле: одноканальные и многоканальные

По быстродействию: умеренного и высокого быстродействия

Рис. 1. Классификация ЦАП

 

 


Дата добавления: 2019-02-12; просмотров: 178; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!