Преобразователи электрического поля



Н. – Мне в голову пришла одна занятная идея.

Л. – Вообще это довольно опасно, но тем не менее скажи, что тебя осенило.

Н. – Твоя шутка оказалась неудачной, моя идея как раз имеет целью устранить опасность. Речь пойдет об измерении напряжения на высоковольтных воздушных линиях, рассчитанных на 60 000 или 200 000 в. Внизу на расстоянии в несколько десятков метров от токонесущих проводников можно было бы расположить параллельно им провод, который будет выполнять роль второй обкладки конденсатора С1 (рис. 8), вот и весь фокус!

 

 

Рис. 8. Емкостный делитель очень высоких напряжений: конденсатор С1 образован высоковольтной линией и расположенным неподалеку от нее проводом.

 

Л. – Еще раз прими мои поздравления, дорогой Незнайкин. Твоя идея уже применяется. Однако ее практическое осуществление сопряжено с некоторыми трудностями (нужно всегда одинаково располагать вторую обкладку конденсатора C1 относительно высоковольтного провода, учитывать наличие других высоковольтных проводников поблизости от интересующего нас провода). Своей идеей ты даешь мне повод рассказать тебе о преобразователях электрического поля. Описанное тобою устройство представляет собой один из таких преобразователей, но его можно применять лишь для переменных электрических полей.

 

 

Н. – А, да. Но прежде чем приступить к дальнейшему изложению, скажи мне все же, что ты подразумеваешь под «электрическим полем».

Л. – Очень просто – это состояние любого участка пространства поблизости от электрических зарядов, в результате чего на все помещенные в этот участок пространства электрические заряды воздействует определенная сила. Когда ты натираешь пластмассовую палочку, вокруг нее возникает электрическое поле, притягивающее легкие предметы. В электронной лампе между катодом и анодом существует электрическое поле, которое притягивает электроны к аноду.

 

 

Н. – Понимаю, но тогда моя система пригодна для всех полей. При измерении постоянного поля следует лишь воспользоваться одним из вибропреобразователей, о которых ты мне недавно говорил…

Л. – Какой ужас! Предположим, что мы сделаем предложенное тобой устройство (рис. 9). Я заменяю электрическое поле батареей с очень высоким напряжением Uвх , включенной последовательно с конденсатором С1 . При включении на некоторое время вибропреобразователя К конденсатор С2 полностью разрядится и его заряд больше не восстановится; напряжение Uвых будет упорно оставаться равным нулю. Нет, вибропреобразователь для нашей цели совсем не годится; но ты прав, когда хочешь преобразовать нечто постоянное в нечто переменное, которое легче использовать; только преобразовывать в этом случае нужно не напряжение, а само электрическое поле.

 

 

Рис. 9. При получении напряжения с помощью емкостного делителя нельзя пользоваться методом замыкания – размыкания, изображенным на рис. 4.

 

 

Изнуряющая гимнастика

Н. – Это можно осуществить, если к заряженному проводнику, создающему поле, подносить и быстро отодвигать металлический предмет, соединенный с конденсатором С1 .

Л. – Идея хороша, но я не думаю, что тебе удастся осуществить движение этого металлического предмета туда сюда со значительной амплитудой и с частотой 50 колебаний в 1 сек; если же ты способен на такое, то тебе нужно выступать в цирке!

 

 

Лучше поместить соединенную с конденсатором С1 металлическую деталь Р в металлический ящик В (рис. 10), а перед ним установить фигурный диск Д, приводимый в движение двигателем М . Диск то закрывает, то открывает отверстие О ; деталь Р подвергается воздействию электрического поля, когда отверстие О открыто, и находится вне этого поля, когда отверстие перекрыто диском. На конденсаторе C1 возникает переменное напряжение, и его остается лишь усилить с помощью усилителя, называемого электрометрическим , о котором мы еще поговорим.

 

 

Рис. 10.  В ящик В помещен металлический элемент Р , расположенный перед отверстием О , открывающимся лишь в моменты, когда вращающийся диск Д открывает его. Таким образом модулируется воздействие электрического поля на Р .

 

Н. – В принципе это несколько напоминает мне метод, применяемый одним из моих друзей, работающим на циклотроне…

Л. – У него дома есть циклотрон???

Н. – Да нет, в Научно‑исследовательском центре в г. Орсей. Там для измерения поля магнита используется небольшая катушка, помещенная на конце палки и вращаемая двигателем. Мой приятель замеряет наводимый в этой катушке ток.

 

 

Л. – Действительно, это классическая система для измерения постоянных магнитных полей. Впрочем, можно поступить иначе. Как ты знаешь, сталь и ферриты (магнитные окислы железа, имеющие структуру керамики) обладают одним свойством, которое обычно считается неприятным: они насыщаются в магнитном поле. Следовательно, достаточно поместить в магнитное поле стальной или ферритовый стержень, насыщение будет изменять магнитную проницаемость (стержень концентрирует магнитные силовые линии и повышает коэффициент самоиндукции катушки, в которую он введен). И теперь остается лишь определить эту проницаемость, для чего нужно просто измерить коэффициент самоиндукции катушки, надетой на стержень, и мы будем знать напряженность магнитного поля.

Н. – Но скажи мне, ведь если магнитное поле будет переменным, то это внесет порядочный хаос в твою систему с вращающейся катушкой или с переменным током, который ты несомненно используешь для измерения коэффициента самоиндукции?

Л. – Дорогой Незнайкин, ты просто ищешь трудности. При переменном магнитном поле катушку оставляют неподвижной и измеряют наведенное в ней напряжение.

Н. – Действительно, это проще. Итак, подведем итоги: ты говорил мне о преобразователях постоянного напряжения (вибропреобразователях), о преобразователях очень высокого напряжения (резистивных или емкостных делителях напряжения), о преобразователях электрических или магнитных полей (вращающейся катушке или насыщающемся феррите). О чем же ты расскажешь мне теперь?

 

 

Механические преобразователи

Л. – Я полагаю, что было бы интересно поговорить о преобразователях, чувствительных к механическим воздействиям.

Н. – Мне представляется, что силу можно измерить электрическим методом. Если изучаемую силу приложить к проволоке, на конце которой укреплена пружина, то в зависимости от величины силы пружина растянется больше или меньше. Если эту проволоку обернуть вокруг оси потенциометра, то с помощью электрических измерений можно определить, на сколько повернулась ось потенциометра.

 

 

Л. – Незнайкин, ты положительно находишься в прекрасной форме! Твою систему, правда в несколько измененном виде, часто используют: потенциометр заменен ползунком, скользящим по проволоке, имеющей высокое удельное сопротивление и намотанной на прямом стержне; при такой конструкции нет необходимости обматывать нить вокруг оси и ее привязывают непосредственно к ползунку.

 

 

Источник постоянного напряжения (рис. 11) подключен к описанному переменному резистору, а вольтметр V , соединенный с одним выводом этого резистора и ползунком, позволяет определить место, занимаемое последним, а следовательно, и определить силу через соответствующее напряжение. Но существует и другой, получивший очень широкое распространение тип преобразователя силы: проволочный тензометрический преобразователь.

 

 

Рис. 11. В зависимости от величины приложенной силы F ползунок потенциометра больше или меньше перемещается влево, благодаря этому величину силы можно определить по показаниям вольтметра V .

 

Н. – Название меня заинтриговало, но это должно быть дьявольски сложно!

Л. – Сложно лишь название. Видишь ли, Незнайкин, сопротивление проволоки изменяется, когда эту проволоку растягивают.

 

 

Н. – А! Теперь я понимаю, почему говорят: «Не тяните за выводы резисторов в приемнике», ведь это изменило бы сопротивление резисторов и…

Л. – О! Причина совсем не в этом. Прежде всего изменения сопротивления, о которых я говорил, составляют всего лишь несколько тысячных долей его первоначальной величины (максимум 0,5 %), а кроме того, эти изменения происходят по известному закону и только у резисторов, сделанных из металлической проволоки. Совет, который тебе дали и который я считаю очень разумным, имеет целью предотвратить механическое повреждение используемых для монтажа аппаратуры резисторов. Посмотри, наши измерительные резисторы сделаны из очень тонкой проволоки, укрепленной в виде зигзага на кусочке бумаги (рис. 12).

 

 

Рис. 12. Тензометрический преобразователь представляет собой проволоку с высоким электрическим сопротивлением, уложенную в виде зигзага и прикрепленную к листу бумаги.

 

Это приспособление наклеивают на деталь (обычно металлическую), которая подвергается воздействию силы, вызывающей деформацию, приводящую к внутренним напряжениям. Если деталь подвергается растяжению, то участок, где наклеен измерительный резистор, удлиняется; это же происходит с резистором, и его сопротивление изменяется.

 

 

 

Вопрос эластичности…

Н. – Любознайкин, но это совсем не годится! Ты говоришь мне о металлической детали…

Л. – Необязательно, это только наиболее распространенный случай.

Н. – Если бы ты сказал мне о резине, я охотно допустил бы, что она деформируется под воздействием силы, но о металле этого сказать нельзя.

Л. – Посмотри на этот металлический стержень; он совершенно прямой, если его держать вертикально. А теперь я перевожу его в горизонтальное положение и один конец зажимаю в тисках; ты видишь, что стержень прогнулся. Теперь ты вынужден признать, что расположенные сверху волокна металла удлинились, а расположенные внизу – укоротились.

 

 

Н. – Тебе не следовало говорить мне этого! Теперь, проходя по мосту, я всегда буду думать, что детали его настила удлиняются под моим весом.

Л. – До тех пор, пока ты не заставишь их превысить предел эластичности, их удлинение остается строго пропорциональным вызывающей его силе, и опасаться совершенно нечего. Мост рассчитан на большие нагрузки. А кроме того, к счастью для нашего преобразователя, провод которого без риска обрыва может удлиниться не больше чем на долю процента, удлинение изучаемой детали очень мало.

Н. – Допускаю, но меня беспокоит другое: ты мне сказал, что изменение сопротивления не превышает 0,5 %, а такое ничтожное изменение несомненно нельзя заметить по стрелке омметра.

 

 

 


Дата добавления: 2019-02-12; просмотров: 332; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!