Аналитический расчет горения топлива



 

Для расчетов используют следующие соотношения и величины:

1) отношение объемного содержания азота к кислороду в обычном воздухе, не обогащенном кислородом, k= 3,76;

2) молекулярную массу химических элементов (для водорода она приближенно равна 2, для азота – 28, кислорода и серы – 32 кг/моль);

3) объемы воздуха и продуктов горения при нормаль‑ныхусловиях (температура 0 °С, давление 101,3 кПа).

Рассмотрим состав жидкого топлива:

СP + НP + ОP + NP + Sp + Ар + Wp=100.

Горючими составляющими являются углерод, водород и сера. При использовании сухого воздуха реакции полного горения составляющих имеют вид:

С + О2 + kN2 =CO2 + kN2 +Q1;

2H2 + O2+ kN2 =2H2O + kN2 + Q2;

S + O2+ kN2 = SO2+ kN2 +Q3.

При горении 1 моля углерода и серы расходуется по 1 молю кислорода. При горении 2 молей водорода расходуется также 1 моль кислорода. С каждым молем кислорода в печь вносится k молей азота. Азот переходит в продукты горения. Поэтому, например, при горении 1 моля углерода получаются 1 моль углекислого газа и 3,76 моля азота. При горении углерода по этой реакции выделяется количество теплоты Qt. При горении водорода образуется свой состав продуктов горения и выделяется иное количество теплоты.

На горение 1 моля углерода затрачивается 1 кмоль кислорода объемом 22,4 м3. Если надо рассчитать расход кислорода на 1 кг углерода, то объем 1 кмоля кислорода делят на молекулярную массу углерода, равную 12. Поэтому на 1 кг углерода расходуется 22,4 / 12 = = 1,867 м3/кг кислорода. Рассуждая аналогично, получим, что на горение 1 кг водорода затрачивается 22,4 / /(2 О2) = 5,5 м3 кислорода (произведение в знаменателе означает, что в реакции горения принимают участие две молекулы водорода с молекулярной массой 2). На горение 1 кг серы расходуется 22,4 / 32 = 0,7 м3 кислорода.

Отношение действительного расхода воздуха к теоретически необходимому расходу называют коэффициентом расхода воздуха:

α = La /L0, или La= αL0,

где La и L0– действительный и теоретический расходы воздуха, м3/кг или м33. Коэффициент расхода воздуха зависит от вида топлива, конструкции топливосжигающего устройства (горелки или форсунки) и температуры подогрева воздуха и газа.

 

Контроль коэффициента расхода воздуха

 

При недостатке воздуха или несовершенстве топли‑восжигающих устройств горение может быть неполным.

Наличие в продуктах горения горючих составляющих (оксида углерода, водорода, метана или сажистого углерода) обусловливает химическую неполноту горения или, как чаще говорят, химический недожог топлива. Последний характеризуется потерями теплоты в процентах от низшей теплоты сгорания топлива.

Чем больше коэффициент расхода воздуха, тем полнее протекает процесс горения. Однако увеличение этого коэффициента приводит к повышенному расходу воздуха и значительным потерям теплоты с газами, уходящими из печи. Температура в печи снижается, что приводит к ухудшению теплоотдачи в рабочем пространстве и усиленному окислению металлов. Поэтому в практике эксплуатации печей стремятся к выбору оптимального коэффициента расхода воздуха a.

Контроль aосуществляют двумя методами. По одному из них измеряют расходы топлива и воздуха и с помощью заранее вычисленных таблиц определяют а.Од‑нако этот метод не позволяет учесть воздух, попадающий в печь через рабочие окна и неплотности в кладке печей. Поэтому периодически коэффициент расхода воздуха проверяют по составу продуктов сгорания при помощи газоанализаторов. Химическим анализом определяют содержание в продуктах сгорания RO2, CO, Н2, СН4 и О2, а затем с помощью формулы С. Г. Тройба определяют a:

α = 1+ UO2изб/ ΣRO2.

Здесь O2изб = О2 – 0,5СО – 0,5Н2– 2СН4– содержание избыточного кислорода.

ΣRO2 = RO2+ CO + СН4+…,%;

U– коэффициент, зависящий от вида топлива.

Для мазута U=0,74, для природного газа – 0,5.

Рассмотрим примеры.

Задача.

Определить a,если RO2 14%, СО 4%, СН40,5%; Н2 1%, О2 2%.

O2изб = 2 – 0,5(4 + 1) – 2 О 0,5 = ‑1,5%;

ΣRO2 = 14 + 4 + 0,5 = 18,5%;

a= 1 – 0,5 О 1,5 / 18,5 = 0,96.

 

Использование энергии

 

Некоторые положения в области тепловой работы печей могут быть получены непосредственно из классической термодинамики обратимых процессов.

Под тепловой работой печи понимается совокупность происходящих в ней тепловых процессов, конечной целью которых является совершение того или иного технологического процесса.

Представим себе печь как сочетание зон технологического процесса ЗТП и генерации тепла ЗГТ, огражденных от окружающей среды кладкой (футеровкой) К. В зоне технологического процесса сосредоточен материал М. Согласно первому закону термодинамики может быть записано следующее уравнение:

QэηK.И.Э =QM + Qk

где Qэ – введенная мощность, Вт/кг;

ηK.И.Э – коэффициент использования энергии в пределах рабочего пространства печи;

QM, Qk – соответственно мощность, усвоенная материалом М и кладкой К, Вт/кг.

Все величины в уравнении (1) отнесены к 1 кг массы материала М.

Коэффициент использования энергии ηK.И.Э зависит прежде всего от вида энергии. Так, электрическая энергия может полностью превращаться в тепло, усвоенное материалом (полезное) и кладкой, поэтому ηK.И.Э = 1. При использовании в печах химической энергии топлива коэффициент использования энергии ηK.И.Э всегда меньше единицы. В топливных печах этот коэффициент называют коэффициентом использования тепла ηK.И.Т Коэффициент характеризует важнейшее понятие о работоспособности энергии в конкретных условиях. В общем виде значение Ькиэ может быть записано следующим образом:

ηK.И.Э = (Qээ)/Qэ =1 – э/Qэ,

где Q3– мощность, которая в виде химического и физического тепла газовой фазы уходит за пределы рабочего пространства печи, Вт/кг.

Величина ηK.И.Э определяется, с одной стороны, полнотой сжигания топлива при данном коэффициенте расхода кислорода, т. е. быстротой смешиваний топлива и кислорода, и, значит, совершенством процессов мас‑сообмена. С другой стороны, величина ηK.И.Э зависит от температуры уходящих из печи газов, т. е. от совершенства процессов теплообмена.

Работоспособность тепла и химической энергии зависит от заданных условий протекания технологического процесса и организации процессов тепло– и массопереноса и поэтому представляет собой величину, значение которой не может быть найдено с помощью термодинамики обратимых процессов, так как связано с кинетикой тепло– и массообмена.

 


Дата добавления: 2019-02-12; просмотров: 217; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!