Oil reserves by country in billions of barrels



Africa and the Middle East North America, Central America, and South America Europe , Asia, and Oceania
AFRICA
Low estimate High estimate
Algeria 11.4 11.8
Libya 33.6 39.1
Nigeria 35.3 35.9
TOTALS 100.8 113.8


MIDDLE EAST

Low estimate High estimate
Iran1 125.8 132.7
Iraq1 115 115
Kuwait1 48 101.5
Qatar 15.2 15.2
Saudi Arabia1 261.9 264.3
UAE1 69.9 97.8
TOTALS 657.3 733.9


TOTAL WORLD RESERVES: 1016.4 - 1636.2
This reserve number cannot be verified.
-NOTE: All numbers, unless otherwise cited, are from the EIA

NORTH AMERICA
Low estimate High estimate
Canada 16.5 163.5
Mexico 12.9 14.8
United States 21.3 29.3
TOTALS 50.7 207.6


CENTRAL AND SOUTH AMERICA

Low estimate High estimate
Brazil 10.6 11.2
Venezuela 52.4 361.2
TOTALS 76 401.1

 

 

Petroleum

Petroleum (Latin Petroleum derived from Greek πέτρα (Latin petra) - rock + έλαιον (Latin oleum) - oil) or crude oil is a naturally occurring liquid found in formations in the Earth consisting of a complex mixture of hydrocarbons (mostly alkanes) of various lengths. The approximate length range is C5H12 to C18H38. Any shorter hydrocarbons are considered natural gas or natural gas liquids, while long-chain hydrocarbons are more viscous, and the longest chains are paraffin wax. In its naturally occurring form, it may contain other nonmetallic elements such as sulfur, oxygen, and nitrogen. It is usually black or dark brown (although it may be yellowish or even greenish) but varies greatly in appearance, depending on its composition. Crude oil may also be found in semi-solid form mixed with sand (as in the Athabasca oil sands in Canada) where it may be referred to as crude bitumen.

Petroleum is used mostly, by volume, for producing fuel oil and gasoline (petrol), both important "primary energy" sources. 84% (37 of 42 gallons in a typical barrel) of the hydrocarbons present in petroleum is converted into energy-rich fuels (petroleum-based fuels), including gasoline, diesel, jet, heating, and other fuel oils,and liquefied petroleum gas.

Due to its high energy density, easy transportability and relative abundance, it has become the world's most important source of energy since the mid-1950s. Petroleum is also the raw material for many chemical products, including solvents, fertilizers, pesticides, and plastics; the 16% not used for energy production is converted into these other materials.

Petroleum is found in porous rock formations in the upper strata of some areas of the Earth's crust. There is also petroleum in oil sands. Known reserves of petroleum are typically estimated at around 1.2 trillion barrels without oil sands, or 3.74 trillion barrels with oil sands. However, oil production from oil sands is currently severely limited. Consumption is currently around 84 million barrels per day, or 4.9 trillion liters per year. Because of reservoir engineering difficulties, recoverable oil reserves are significantly less than total oil-in-place. At current consumption levels, and assuming that oil will be consumed only from reservoirs, known reserves would be gone in about 32 years, around 2039, potentially leading to a global energy crisis. However, this ignores any new discoveries, changes in consumption, using oil sands, using synthetic petroleum, and other factors.

Abiogenic theory

The idea of abiogenic petroleum origin was championed in the Western world by astronomer Thomas Gold based on thoughts from Russia, mainly on studies of Nikolai Kudryavtsev. The idea proposes that hydrocarbons of purely geological origin exist in the planet. Hydrocarbons are less dense than aqueous pore fluids, and are proposed to migrate upward through deep fracture networks. Thermophilic, rock-dwelling microbial life-forms are proposed to be in part responsible for the biomarkers found in petroleum.

This theory is a minority opinion, especially amongst geologists; no oil companies are currently known to explore for oil based on this theory.

The oil industry classifies "crude" by the location of its origin (e.g., "West Texas Intermediate, WTI" or "Brent") and often by its relative weight or viscosity ("light", "intermediate" or "heavy"); refiners may also refer to it as "sweet," which means it contains relatively little sulfur, or as "sour," which means it contains substantial amounts of sulfur and requires more refining in order to meet current product specifications. Each crude oil has unique molecular characteristics which are understood by the use of crude oil assay analysis in petroleum laboratories.

Barrels from an area in which the crude oil's molecular characteristics have been determined and the oil has been classified are used as pricing references throughout the world. These references are known as Crude oil benchmarks:

Biogenic theory

Most geologists view crude oil and natural gas as the product of compression and heating of ancient organic materials over geological time. According to this theory, oil is formed from the preserved remains of prehistoric zooplankton and algae which have been settled to the sea (or lake) bottom in large quantities under anoxic conditions. Terrestrial plants, on the other hand, tend to form coal. Over geological time this organic matter, mixed with mud, is buried under heavy layers of sediment. The resulting high levels of heat and pressure cause the organic matter to chemically change during diagenesis, first into a waxy material known as kerogen which is found in various oil shales around the world, and then with more heat into liquid and gaseous hydrocarbons in a process known as catagenesis. Because most hydrocarbons are lighter than rock or water, these sometimes migrate upward through adjacent rock layers until they become trapped beneath impermeable rocks, within porous rocks called reservoirs. Concentration of hydrocarbons in a trap forms an oil field, from which the liquid can be extracted by drilling and pumping. Geologists often refer to an "oil window" which is the temperature range that oil forms in—below the minimum temperature oil remains trapped in the form of kerogen, and above the maximum temperature the oil is converted to natural gas through the process of thermal cracking. Though this happens at different depths in different locations around the world, a 'typical' depth for the oil window might be 4–6 km. Note that even if oil is formed at extreme depths, it may be trapped at much shallower depths, even if it is not formed there (the Athabasca Oil Sands is one example). Three conditions must be present for oil reservoirs to form: first, a source rock rich in organic material buried deep enough for subterranean heat to cook it into oil; second, a porous and permeable reservoir rock for it to accumulate in; and last a cap rock (seal) that prevents it from escaping to the surface.

The vast majority of oil that has been produced by the earth has long ago escaped to the surface and been biodegraded by oil-eating bacteria. Oil companies are looking for the small fraction that has been trapped by this rare combination of circumstances. Oil sands are reservoirs of partially biodegraded oil still in the process of escaping, but contain so much migrating oil that, although most of it has escaped, vast amounts are still present - more than can be found in conventional oil reservoirs. On the other hand, oil shales are source rocks that have never been buried deep enough to convert their trapped kerogen into oil.

The reactions that produce oil and natural gas are often modeled as first order breakdown reactions, where kerogen is broken down to oil and natural gas by a set of parallel reactions, and oil eventually breaks down to natural gas by another set of reactions. The first set was originally patented in 1694 under British Crown Patent No. 330 covering,

Nikolai Kudryavtsev

Nikolai Alexandrovich Kudryavtsev Russian: Николай Александрович Кудрявцев (Opochka, October 21, 1893 - Leningrad, December 12, 1971) was a Russian petroleum geologist. He is the founding father of modern abiogenic theory for origin of petroleum, which states that petroleum is formed from non-biological sources of hydrocarbons located deep in the Earth's crust and mantle.

Prof. Nikolai A. Kudryavtsev (1893-1971)

He graduated from Leningrad Mining Institute in 1922, obtained a Dr.Sc. in Geology and Mineralogy in 1936, and become professor in 1941. Started his geological career in 1920 at the USSR Geological Committee. In 1929-1971 worked for All-Union Geological Research Institute (VNIGRI). He suffered from political repressions during Stalin’s regime for his unorthodox thinking, spending several years in GULAG camps in the Transpolar European Russia as “enemy of the people”. After that, he was prohibited from living or staying in central cities of USSR. His only son died defending the Brest Fortress in the beginning of Nazi aggression against USSR.

Kudryavtsev conducted regional geological studies that resulted in discoveries of commercial oil and gas in the Grozny district (Chechnya Autonomy), Central Asia, Timan-Pechora, and other regions of the Soviet Union. He led reconnaissance exploration research in Georgia, and compiled the program of key exploration wells in the West Siberia in 1947 that paved the way to the new era of oil and gas production in Russia that started with first gas gusher near Berezovo in 1953.

Kudryavtsev's Rule states that any region in which hydrocarbons are found at one level will also have hydrocarbons in large or small quantities at all levels down to and into the basement rock. Thus, where oil and gas deposits are found, there will often be coal seams above them. Gas is usually the deepest in the pattern, and can alternate with oil. All petroleum deposits have a capstone generally impermeable to carbon's upward migration, and this capstone leads to the accumulation of the hydrocarbon

Development of the Rule

Russian geologist Nikolai Kudryavtsev was also a prominent and forceful advocate of the abiogenic theory. He argued that no petroleum resembling the chemical composition of natural crudes has ever been made from plant material in the laboratory under conditions resembling those in nature.

He gave many examples of substantial and sometimes commercial quantities of petroleum being found in crystalline or metamorphic basements, or in sediments directly overlying those. He cited cases in Kansas, California, western Venezuela and Morocco. He also pointed out that oil pools in sedimentary strata are often related to fractures in the basement directly below. This is evidenced by the Ghawar supergiant oil field (Saudi Arabia); the Panhandle Field in Kansas (United States), which also produces helium; the Tengiz Field (Kazakhstan); the White Tiger Field (Vietnam); and innumerable others. The Lost Soldier Field in Wyoming has oil pools, he stated, at every horizon of the geological section, from the Cambrian sandstone overlying the basement to the upper Cretaceous deposits. A flow of oil was also obtained from the basement itself. Hydrocarbon gases, he noted, are not rare in igneous and metamorphic rocks of the Canadian Shield. Petroleum in Precambrian gneiss is encountered in wells on the eastern shore of Lake Baikal.

Kudryavtsev concluded that commercial accumulations are simply found where permeable zones are overlaid by impermeable ones.

Kudryavtsev introduced a number of other relevant observations into the argument about the theory of abiogenic petroleum origin.

  • Columns of flames have been seen during the eruptions of some volcanoes, sometimes reaching 500 meters in height, such as during the eruption of Mount Marapi in Sumatra in 1932. (There have been several other instances subsequently.)
  • The eruptions of mud-volcanoes have liberated such large quantities of methane that even the most prolific gasfield underneath should have been exhausted long ago.
  • The quantities of mud deposited in some cases would have required eruptions of much more gas than is known in any gasfield anywhere.
  • The water in mud volcanoes in some instances carries such substances as iodine, bromine and boron that could not have been derived from local sediments, and that exceed the concentrations in seawater one hundred fold.
  • Mud volcanoes are often associated with lava volcanoes, and the typical relationship is that where they are close, the mud volcanoes emit incombustible gases, while the ones further away emit methane.
  • He knew of the occurrence of oil in basement rocks of the Kola Peninsula, and of the surface seeps of oil in the Siljan Ring formation of central Sweden. He noted as mentioned above that the enormous quantities of hydrocarbons in the Athabasca tar sands in Canada would have required vast amounts of source rocks for their generation in the conventional discussion, when in fact no source rocks have been found.

Classification

The oil industry classifies "crude" by the location of its origin (e.g., "West Texas Intermediate, WTI" or "Brent") and often by its relative weight or viscosity ("light", "intermediate" or "heavy"); refiners may also refer to it as "sweet," which means it contains relatively little sulfur, or as "sour," which means it contains substantial amounts of sulfur and requires more refining in order to meet current product specifications. Each crude oil has unique molecular characteristics which are understood by the use of crude oil assay analysis in petroleum laboratories.

Barrels from an area in which the crude oil's molecular characteristics have been determined and the oil has been classified are used as pricing references throughout the world. These references are known as Crude oil benchmarks:

  • Brent Crude, comprising 15 oils from fields in the Brent and Ninian systems in the East Shetland Basin of the North Sea. The oil is landed at Sullom Voe terminal in the Shetlands.
  • Oil production from Europe, Africa and Middle Eastern oil flowing West tends to be priced off the price of this oil, which forms a benchmark.
  • West Texas Intermediate (WTI) for North American oil.
  • Dubai, used as benchmark for Middle East oil flowing to the Asia-Pacific region.
  • Tapis (from Malaysia, used as a reference for light Far East oil)
  • Minas (from Indonesia, used as a reference for heavy Far East oil)
  • The OPEC Reference Basket, a weighted average of oil blends from various OPEC (The Organization of the Petroleum Exporting Countries) countries.

History

Petroleum, in some form or other, is not a substance new in the world's history. More than four thousand years ago, according to Herodotus and confirmed by Diodorus Siculus, asphalt was employed in the construction of the walls and towers of Babylon; there were oil pits near Ardericca (near Babylon), and a pitch spring on Zacynthus. Great quantities of it were found on the banks of the river Issus, one of the tributaries of the Euphrates. Ancient Persian tablets indicate the medicinal and lighting uses of petroleum in the upper levels of their society.

The first oil wells were drilled in China in the 4th century or earlier. They had depths of up to 243 meters (about 800 feet) and were drilled using bits attached to bamboo poles. The oil was burned to evaporate brine and produce salt. By the 10th century, extensive bamboo pipelines connected oil wells with salt springs. The ancient records of China and Japan are said to contain many allusions to the use of natural gas for lighting and heating. Petroleum was known as burning water in Japan in the 7th century.

In the 8th century, the streets of the newly constructed Baghdad were paved with tar, derived from easily accessible petroleum from natural fields in the region. In the 9th century, oil fields were exploited in the area around modern Baku, Azerbaijan, to produce naphtha. These fields were described by the geographer Masudi in the 10th century, and by Marco Polo in the 13th century, who described the output of those wells as hundreds of shiploads. Petroleum was first distilled by Muslim chemists in the 9th century, producing chemicals such as kerosene.

The earliest mention of American petroleum occurs in Sir Walter Raleigh's account of the Trinidad Pitch Lake in 1595; whilst thirty-seven years later, the account of a visit of a Franciscan, Joseph de la Roche d'Allion, to the oil springs of New York was published in Sagard's Histoire du Canada. A Russian traveller, Peter Kalm, in his work on America published in 1748 showed on a map the oil springs of Pennsylvania.

The modern history of petroleum began in 1846 with the discovery of the process of refining kerosene from coal by Atlantic Canada's Abraham Pineo Gesner.

The first modern oil well was drilled in 1745 in Pechelbronn, Alsace (France) under the direction of Louis de La Sablonniere, by special appointement of king Louis XV. The Pechelbronn oil field was alive until 1970, and was the birth place of companies like Schlumberger. The first modern refinery was built there in 1857.

Poland's Ignacy Łukasiewicz discovered a means of refining kerosene from the more readily available "rock oil" ("petr-oleum") in 1852 and the first rock oil mine was built in Bóbrka, near Krosno in southern Poland in the following year. These discoveries rapidly spread around the world, and Meerzoeff built the first Russian refinery in the mature oil fields at Baku in 1861. At that time Baku produced about 90% of the world's oil.

The first commercial oil well drilled in North America was in Oil Springs, Ontario, Canada in 1858, dug by James Miller Williams. The American petroleum industry began with Edwin Drake's drilling of a 69-foot-deep oil well in 1859, on Oil Creek near Titusville, Pennsylvania, for the Seneca Oil Company (originally yielding 25 barrels a day, by the end of the year output was at the rate of 15 barrels).[10] The industry grew slowly in the 1800s, driven by the demand for kerosene and oil lamps. It became a major national concern in the early part of the 20th century; the introduction of the internal combustion engine provided a demand that has largely sustained the industry to this day. Early "local" finds like those in Pennsylvania and Ontario were quickly exhausted, leading to "oil booms" in Texas, Oklahoma, and California.

By 1910, significant oil fields had been discovered in Canada (specifically, in the province of Ontario), the Dutch East Indies (1885, in Sumatra), Iran (1908, in Masjed Soleiman), Peru, Venezuela, and Mexico, and were being developed at an industrial level.

Even until the mid-1950s, coal was still the world's foremost fuel, but oil quickly took over. Following the 1973 energy crisis and the 1979 energy crisis, there was significant media coverage of oil supply levels. This brought to light the concern that oil is a limited resource that will eventually run out, at least as an economically viable energy source. At the time, the most common and popular predictions were always quite dire, and when they did not come true, many dismissed all such discussion. The future of petroleum as a fuel remains somewhat controversial. USA Today news (2004) reports that there are 40 years of petroleum left in the ground. Some would argue that because the total amount of petroleum is finite, the dire predictions of the 1970s have merely been postponed. Others argue that technology will continue to allow for the production of cheap hydrocarbons and that the earth has vast sources of unconventional petroleum reserves in the form of tar sands, bitumen fields and oil shale that will allow for petroleum use to continue in the future, with both the Canadian tar sands and United States shale oil deposits representing potential reserves matching existing liquid petroleum deposits worldwide.

Today, about 90% of vehicular fuel needs are met by oil. Petroleum also makes up 40% of total energy consumption in the United States, but is responsible for only 2% of electricity generation. Petroleum's worth as a portable, dense energy source powering the vast majority of vehicles and as the base of many industrial chemicals makes it one of the world's most important commodities. Access to it was a major factor in several military conflicts including World War II and the Persian Gulf Wars of the late twentieth and early twenty-first centuries. The top three oil producing countries are Saudi Arabia, Russia, and the United States. About 80% of the world's readily accessible reserves are located in the Middle East, with 62.5% coming from the Arab 5: Saudi Arabia (12.5%), UAE, Iraq, Qatar and Kuwait. However, with today's oil prices, Venezuela has larger reserves than Saudi Arabia due to crude reserves derived from bitumen.

Some Facts

Consumption statistics

Global fossil carbon emissions, an indicator of consumption, for 1800-2000.

Total is black. Oil is in blue.

 

 

Alternatives to petroleum


Дата добавления: 2019-01-14; просмотров: 518; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!