Принцип маркировки легированных сталей.



 

Качественные и высококачественные легированные стали

 

Обозначение буквенно-цифровое. Легирующие элементы имеют условные обозначения, Обозначаются буквами русского алфавита.

Обозначения легирующих элементов:

Х – хром, Н – никель, М – молибден, В – вольфрам,

К – кобальт, Т – титан, А – азот ( указывается в середине марки),

Г – марганец, Д – медь, Ф – ванадий, С – кремний,

П – фосфор, Р – бор, Б – ниобий, Ц – цирконий,

Ю – алюминий, А -в середине-азот, А в конце марки –высококачественная сталь.

 

 

Легированные конструкционные стали

 

Сталь 15Х25Н19ВС2

В начале марки указывается двухзначное число, показывающее содержание углерода в сотых долях процента. Далее перечисляются легирующие элементы. Число, следующее за условным обозначение элемента, показывает его содержание в процентах,

Если число не стоит, то содержание элемента не превышает 1,5 %.

В указанной марке стали содержится 0,15 % углерода, 35% хрома, 19 % никеля, до 1,5% вольфрама, до 2 % кремния.

Для обозначения высококачественных легированных сталей в конце марки указывается символ А.

 

 

Легированные инструментальные стали

 

Сталь 9ХС, сталь ХВГ.

В начале марки указывается однозначное число, показывающее содержание углерода в десятых долях процента. При содержании углерода более 1 %, число не указывается,

Далее перечисляются легирующие элементы, с указанием их содержания.

Некоторые стали имеют нестандартные обозначения.

 

 

Быстрорежущие инструментальные стали

 

Сталь Р18

Р – индекс данной группы сталей (от rapid – скорость). Содержание углерода более 1%. Число показывает содержание основного легирующего элемента – вольфрама.

В указанной стали содержание вольфрама – 18 %.

Если стали содержат легирующие элемент, то их содержание указывается после обозначения соответствующего элемента.

 

 

Шарикоподшипниковые стали

 

Сталь ШХ6, сталь ШХ15ГС

 

Ш – индекс данной группы сталей. Х – указывает на наличие в стали хрома. Последующее число показывает содержание хрома в десятых долях процента, в указанных сталях, соответственно, 0,6 % и 1,5 %. Также указываются входящие с состав стали легирующие элементы. Содержание углерода более 1 %.

 

 

Влияние элементов на полиморфизм железа

 

Все элементы, которые растворяются в железе, влияют на температурный интервал существование его аллотропических модификаций (А = 911oС, А =1392oС).

В зависимости от расположения элементов в периодической системе и строения кристаллической решетки легирующего элемента возможны варианты взаимодействия легирующего элемента с железом. Им соответствуют и типы диаграмм состояния сплавов системы железо – легирующий элемент (рис. 17.1)

Большинство элементов или повышают А и снижают А , расширяя существовавшие –модификации (рис.17.1.а), или снижают А4 и повышают А , сужая область существования – модификации (рис.17.1.б).

 

 

Рис. 17.1. Схематические диаграммы состояния Fe – легирующий элемент. а – для элементов, расширяющих область существования –модификации; б – для элементов, сужающих область существования –модификации

 

Свыше определённого содержания марганца, никеля и других элементов, имеющих гранецентрированную кубическую решетку, – состояние существует как стабильное от комнатной температуры до температуры плавления, такие сплавы на основе железа называются  аустенитными.

При содержании ванадия, молибдена, кремния и других элементов, имеющих объемно-центрированную кубическую решетку, выше определённого предела, устойчивым при всех температурах является – состояние. Такие сплавы на основе железа называются  ферритными.

Аустенитные и ферритные сплавы не имеют превращений при нагреве и охлаждении.

 

 

Контрольные вопросы.

1. В чём различие между углеродистыми и легированными сталями?

2. Какие легирующие компоненты увеличивают твёрдость и прочность стали?

3. Какие легирующие компоненты улучшают химические свойства стали?

4. Как маркируются легированные конструкционные стали?

5. Как маркируются легированные инструментальные стали?

6. Чем характеризуются основные марки быстрорежущей инструментальной стали?

7. ***Какими свойствами обладает аустенитная сталь?

8. ***Какие элементы делают сталь магнитной даже выше «точки Кюри»?

Задание.

Продолжить практическую работу №1. Сдать отчёт. Защита.

Лекция 8.

Формирование структуры деформированных металлов и сплавов.

План.

1. Физическая природа деформации металлов.

2.Пластическое деформирование поли- и монокристаллов.

3.Механизм пластического деформирования.

4.Разрушение металлов.

5.Механические свойства и способы определения их количественных характеристик (повторение)

6.Особенности деформации поликристаллических тел.

7.Влияние пластической деформации на структуру и свойства металла: наклеп

8. Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация

 


Дата добавления: 2018-11-24; просмотров: 442; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!