ПРИЛИВНОЕ ТРЕНИЕ. КАНТ И ТОМСОН – ТЕЙТ 5 страница



Ясно, таким образом, что Видеман, высказывая это положение, не связывал с ним ничего определенного и что «потеря живой силы» – это лишь своего рода deus ex machina [буквально; «бог из машины» (в античном театре актеры, изображавшие богов, появлялись на сцене с помощью особых механизмов); в переносном смысле: неожиданно появляющееся лицо, которое спасает положение, или неожиданная, не вытекающая из хода событий развязка. Ред.] , долженствующий сделать для него возможным неприятный прыжок из старой контактной теории в химическую теорию объяснения тока. Действительно, теперь потеря живой силы сделала свое дело, и ей дают отставку; отныне единственным источником энергии при образовании тока неоспоримо признается химический процесс в цепи, и наш автор теперь озабочен только тем, чтобы каким‑нибудь приличным образом избавиться от последнего остатка возбуждения электричества при контакте химически индифферентных тел, т. е. от разъединительной, силы, действующей в месте контакта обоих металлов.

Когда читаешь вышеприведенное видемановское объяснение образования тока, то кажется, что имеешь перед собой образец той апологетики, с которой лет сорок тому назад правоверные и полуправоверные теологи выступали против филологически‑исторической критики библии, предпринятой Штраусом, Вильке, Бруно Бауэром и другими. В обоих случаях пользуются одинаковым методом. И это неизбежно, ибо в обоих случаях дело идет о том, чтобы спасти старую традицию от натиска научного мышления. Исключительная эмпирия, позволяющая себе мышление в лучшем случае разве лишь в форме математических вычислений, воображает, будто она оперирует только бесспорными фактами. В действительности же она оперирует преимущественно традиционными представлениями, по большей части устаревшими продуктами мышления своих предшественников, такими, например, как положительное и отрицательное электричество, электрическая разъединительная сила, контактная теория. Последние служат ей основой для бесконечных математических выкладок, в которых из‑за строгости математических формул легко забывается гипотетическая природа предпосылок. Насколько скептически подобного рода эмпирия относится к результатам современной ей научной мысли, настолько же слепо она доверяет результатам мышления своих предшественников. Даже экспериментально установленные факты мало‑помалу неразрывно связываются у нее с соответствующими традиционными толкованиями их; в трактовку даже самого простого электрического явления вносится фальсификация при помощи, например, контрабандного протаскивания теории о двух электричествах. Эта эмпирия уже не в состоянии правильно изображать факты, ибо в изображение их у нее прокрадывается традиционное толкование этих фактов. Одним словом, здесь, в области учения об электричестве, мы имеем столь же развитую традицию, как и в области теологии. А так как в обеих этих областях результаты новейшего исследования, установление неизвестных до того или же оспаривавшихся фактов и неизбежно вытекающие отсюда теоретические выводы безжалостно бьют по старой традиции, то защитники этой традиции попадают в затруднительнейшее положение. Они должны искать спасения во всякого рода уловках, в жалких увертках, в затушевывании непримиримых противоречий и тем самым сами попадают в конце концов в такой лабиринт противоречий, из которого для них нет никакого выхода; Вот эта‑то вера в старую теорию электричества и запутывает Видемана в самые безысходные противоречия с самим собой, когда он делает безнадежную попытку рационалистически примирить старое объяснение тока, исходящее из «контактной силы», с новой теорией, основывающейся на освобождении химической энергии.

Нам, может быть, возразят, что данная выше критика видемановского объяснения тока основывается на придирках к словам и что если Видеман и выражается вначале несколько небрежно и неточно, то в конце концов он все же дает правильное, согласующееся с принципом сохранения энергии объяснение; что, значит, все у него кончается благополучно. В ответ на это мы приведем здесь другой пример, его трактовку процесса в цепи: цинк, разбавленная серная кислота, медь.

«Если соединить проволокой обе пластинки, то возникает гальванический ток... Благодаря электролитическому процессу из воды разбавленной серной кислоты выделяется на меди один эквивалент водорода, улетучивающийся в виде пузырьков. На цинке образуется один эквивалент кислорода, окисляющий цинк в окись цинка, которая растворяется в окружающей кислоте в сернокислую окись цинка» (кн. i, стр. 593).

Чтобы из воды выделить газообразный водород и газообразный кислород, для каждой молекулы воды требуется энергия, равная 68924 единицам теплоты. Откуда же получается в вышеуказанной цепи эта энергия? «Благодаря электролитическому процессу». А где же берет ее электролитический процесс? На это мы не получаем никакого ответа.

Однако далее Видеман рассказывает нам – и не один раз, а по крайней мере два раза (кн. I, стр. 472 и 614), – что вообще «согласно новейшим опытам [при электролизе] разлагается не сама вода», а, в данном случае, серная кислота H2SO4, которая распадается, с одной стороны, на Н2, с другой – на SO3+ О, причем H2 и О могут при известных обстоятельствах улетучиваться в виде газов. Но это совершенно меняет природу всего процесса. H2 в H2SO4 прямо заменяется двухвалентным цинком, образуя сернокислый цинк ZnSO4. На одной стороне остается H2, а на другой SO3+О. Оба газа улетучиваются в той пропорции, в которой они образуют воду; SO3 соединяется с водой раствора H2O снова в H2SO4 , т. е. в серную. кислоту. Но при образовании ZnSO4развивается количество энергии, не только достаточное для вытеснения и освобождения водорода серной кислоты, но и дающее еще значительный избыток, который расходуется в нашем случае на образование тока. Таким образом, цинк не ждет, пока электролитический процесс доставит в его распоряжение свободный кислород, чтобы благодаря этому сначала окислиться, а потом раствориться в кислоте. Наоборот: он прямо вступает в процесс, который вообще осуществляется только благодаря этому вступлению цинка.

Мы видим здесь, как на помощь устарелым представлениям о контакте приходят устарелые химические представления. Согласно новейшим воззрениям, соль есть кислота, в которой водород замещен каким‑нибудь металлом. Рассматриваемый нами процесс подтверждает это воззрение: прямое вытеснение водорода кислоты цинком вполне объясняет происходящее здесь превращение энергии. Прежнее воззрение, которого придерживается Видеман, считает соль соединением какого‑нибудь металлического окисла с какой‑нибудь кислотой и поэтому говорит не о сернокислом цинке, а о сернокислой окиси цинка.

Но для получения в нашей цепи из цинка и серной кислоты сернокислой окиси цинка необходимо, чтобы цинк сперва окислился. Для достаточно быстрого окисления цинка мы нуждаемся в свободном кислороде. Чтобы получить свободный кислород, мы должны допустить, – так как на меди появляется водород, – что вода разлагается на свои составные части. Для разложения воды мы нуждаемся в огромном количестве энергии. Откуда же она получается? Просто «благодаря электролитическому процессу», который в свою очередь не может иметь места, пока не начал образовываться его конечный химический продукт, «сернокислая окись цинка». Дитя рождает свою мать.

Таким образом, и здесь у Видемана весь процесс совершенно извращен и поставлен на голову, и это потому, что Видеман, не задумываясь, валит в одну кучу два прямо противоположных процесса – активный и пассивный электролизы, рассматривая их как электролиз просто.

До сих пор мы рассматривали только то, что происходит в цепи, т. е. тот процесс, при котором благодаря химическому действию освобождается избыток энергии, превращающийся при помощи приспособлений цепи в электричество. Но, как известно, этот процесс можно обратить: получившееся в цепи из химической энергии электричество длительного тока может быть в свою очередь обратно превращено в химическую энергию во включенной в цепь электролитической ванне. Оба процесса явно противоположны друг другу: если рассматривать первый как химико‑электрический, то второй является электро‑химическим. Оба они могут происходить в одной и той же цепи с одними и теми же веществами. Так, например, батарея из газовых элементов, ток которой порождается благодаря соединению водорода и кислорода в воду, может дать во включенной в цепь электролитической ванне водород и кислород в той пропорции, в которой они образуют воду. Обычная концепция рассматривает оба эти противоположных процесса под одним общим названием электролиза и не проводит различия между активным и пассивным электролизами, между возбуждающей жидкостью и пассивным электролитом. Так, Видеман на 143 страницах рассматривает электролиз вообще, прибавляя затем в заключение несколько замечаний об «электролизе в цепи», где происходящие в действительных цепях процессы занимают к тому же только наименьшую часть семнадцати страничек этого отдела. Равным образом и в следующей затем «теории электролиза» эта противоположность между цепью и электролитической ванной даже и не упоминается; а тот, кто пытался бы отыскать в примыкающей сюда главе «Влияние электролиза на сопротивление проводников и на электродвижущую силу в замкнутой цепи» какие‑нибудь соображения насчет превращений энергии в замкнутой цепи, был бы жестоко разочарован.

Рассмотрим же этот непреодолимый «электролитический процесс», который способен без видимого притока энергии отделить H2 от О и который в интересующих нас теперь отделах книги играет ту же роль, какую прежде играла таинственная «электрическая разъединительная сила».

«Наряду с первичным, чисто электролитическим процессом отделения ионов возникает еще масса вторичных , совершенно независимых от него, чисто химических процессов благодаря воздействию выделенных током ионов. Это воздействие может производиться на вещество электродов и на разлагаемое тело, а в растворах также на растворитель» (кн. I, стр. 481).

Вернемся к приведенной выше цепи: цинк и медь в разбавленной серной кислоте. Здесь, по собственным словам Видемана, выделяемые ионы это Н2 и О воды. Следовательно, для него окисление цинка и образование ZnSO4 есть вторичный, независимый от электролитического процесса, чисто химический процесс, хотя только благодаря ему становится возможным первичный процесс. Рассмотрим несколько подробнее ту путаницу, которая неизбежно должна получиться из этого извращения действительного хода вещей.

Остановимся прежде всего на так называемых вторичных процессах в электролитической ванне, для иллюстрации которых Видеман приводит нам несколько примеров [Заметим раз навсегда, что Видеман употребляет повсюду старые химические значения эквивалентов и пишет: HO, ZnCl и т. д. У меня же повсюду даны современные атомные веса, так что я пишу: Н2O, ZnCl, и т. д.] (стр. 481–482):

I. Электролиз сернокислого натрия (Na2SO4), растворенного в воде.

Сернокислый натрий «распадается... на 1 эквивалент SO3+О... и 1 эквивалент Na... Но последний реагирует с водой раствора и выделяет из нее 1 эквивалент Н, причем образуется 1 эквивалент едкого натра [NaOH], который растворяется в окружающей воде».

Уравнение пишется следующим образом:

Na2SO4 + 2Н2О = О + SO3 + 2NaOH + 2Н.

В этом примере можно было бы действительно рассматривать разложение

Na2SO4 = Na2 + SO3 + О

как первичный, электро‑химический, а дальнейшее превращение

Na2 + 2Н2О = 2NaOH + 2Н

как вторичный, чисто химический процесс. Но этот вторичный процесс совершается непосредственно на том электроде, где появляется водород; поэтому освобождающееся здесь весьма значительное количество энергии (111810 единиц теплоты для Na, О, Н, aq. по Юлиусу Томсену) превращается – по крайней мере большею частью – в электричество, и только небольшая часть переходит в электролитической ванне непосредственно в теплоту. Однако последнее может произойти и с химической энергией, прямо или первично освобождающейся в цепи. Но получившееся таким образом и превратившееся в электричество количество энергии вычитается из того количества ее, которое должен доставлять ток для непрерывного разложения Na2SO4. Если превращение натрия в гидрат окиси являлось в первый момент всего процесса вторичным процессом, то со второго момента оно становится существенным фактором всего процесса и перестает поэтому быть вторичным.

Но в этой электролитической ванне происходит еще третий процесс: SO3 – если оно не вступает в соединение с металлом положительного электрода, причем опять‑таки освободилось бы некоторое количество энергии, – соединяется с Н2О в H2SO4, серную кислоту. Однако это превращение не происходит непременно непосредственно на электроде, и поэтому освобождающееся при этом количество энергии (21320 единиц теплоты по Юлиусу Томсену) целиком или в значительнейшей части в самой электролитической ванне превращается в теплоту, отдавая, в форме электричества, току в крайнем случае лишь весьма незначительную свою часть. Таким образом, единственный действительно вторичный процесс, имеющий место в этой электролитической ванне, у Видемана не упоминается вовсе.

II. «Если подвергать электролизу раствор медного купороса [CuSO4+5H2O] между положительным медным электродом и отрицательным платиновым, то – при одновременном разложении сернокислой воды в той же цепи – на отрицательном платиновом электроде на 1 эквивалент разложенной воды выделяется 1 эквивалент меди; на положительном электроде должен был бы появиться 1 эквивалент SO4, но последнее соединяется с медью электрода, образуя 1 эквивалент CuSO4, который растворяется в воде подвергаемого электролизу раствора» [кн. I, стр. 481].

Итак, мы должны, выражаясь современным химическим языком, представить себе весь процесс следующим образом: на платине осаждается Си; освобождающееся SO4, которое не может существовать само по себе, распадается на SO3+О, причем последний улетучивается в свободном виде; SO3 заимствует из растворителя H2O и образует серную кислоту (H2SO4), которая снова соединяется, при выделении H2, с медью электрода в CuSO4. Строго говоря, мы имеем здесь три процесса: 1) разделение Cu и SO4; 2) SO3 + О + Н2О = H2SO4 + О; 3) H2SO4 + Cu = H2 + CuSO4. Можно было бы рассматривать первый процесс как первичный, а оба других как вторичные. Но если мы поставим вопрос о происходящих здесь превращениях энергии, то мы найдем, что первый процесс целиком компенсируется частью третьего: отделение меди от SO4 компенсируется обратным соединением обоих на другом электроде. Если мы отвлечемся от энергии, необходимой для перемещения меди от одного электрода к другому, а также от неизбежной (не определимой точно) потери энергии в цепи благодаря превращению ее в теплоту, то мы окажемся здесь перед таким случаем, где так называемый первичный процесс не отнимает у тока никакой энергии. Ток дает энергию исключительно только для того, чтобы сделать возможным разделение (к тому же еще не прямое, а косвенное) H2 и О, которое оказывается действительным химическим результатом всего процесса, – стало быть, для того, чтобы осуществить некоторый вторичный или даже третичный процесс.

Тем не менее в обоих приведенных выше примерах, равно как и в других случаях, различение первичных и вторичных процессов имеет бесспорно некоторую относительную правомерность. Так, в обоих случаях наряду с прочими явлениями происходит, по‑видимому, также и разложение воды, причем составные элементы воды выделяются на противоположных электродах. Так как, согласно новейшим опытам, абсолютно чистая вода максимально приближается к идеалу непроводника, а следовательно, и неэлектролита, то важно доказать, что в этих и подобных случаях разлагается прямо электрохимически не вода, а что здесь составные элементы воды выделяются из кислоты, в образовании которой, разумеется, должна участвовать также и вода раствора.

III. «Если подвергать электролизу... соляную кислоту, [HCl + + 8Н]... одновременно в двух U‑образных трубках... и пользоваться в одной трубке положительным цинковым электродом, а в другой медным электродом, то в первой трубке растворяется количество цинка 32,53, во второй – количество меди 2x31,7» [кн. I, стр.482].

Оставим пока в стороне медь и обратимся к цинку. По Видеману, первичным процессом является здесь разложение HCl, вторичным – растворение Zn.

Итак, согласно этой точке зрения, ток извне доставляет в электролитическую ванну необходимую для разделения Н и Cl энергию; после того как произошло это разделение, Cl соединяется с Zn, причем освобождается некоторое количество энергии, вычитающееся из энергии, необходимой для разделения Н и Cl; таким образом, ток должен доставить только разницу этих величин. Пока все идет великолепно; но если мы рассмотрим внимательнее оба эти количества энергии, то найдем, что количество энергии, освобождающееся при образовании ZnCl2, больше количества ее, потребляемого при разделении 2HC1, и что, следовательно, ток не только не должен доставлять энергию извне, но, наоборот, он сам получает энергию. Перед нами теперь уже не пассивный электролит, а возбуждающая жидкость, не электролитическая ванна, а цепь, увеличивающая образующую ток батарею на один лишний элемент; процесс, который мы, по Видеману, должны рассматривать как вторичный, оказывается абсолютно первичным, становится источником энергии всего процесса, делая этот процесс независимым от доставляемого извне тока батареи.

Здесь мы ясно видим, в чем заключается источник всей путаницы, царящей в теоретическом изложении Видемана. Видеман исходит из электролиза, не интересуясь тем, активен он или пассивен, не заботясь о том, имеет ли он перед собой цепь или электролитическую ванну. «Коновал есть коновал», как сказал старый майор вольноопределяющемуся из докторов философии[348]. А так как электролиз гораздо проще изучать в электролитической ванне, чем в цепи, то он фактически исходит из электролитической ванны и делает из происходящих в ней процессов, из частично правомерного разделения их на первичные и вторичные, масштаб для совершенно обратных процессов в цепи, не замечая при этом вовсе, как электролитическая ванна незаметно превращается у него в цепь. Поэтому он и может выставить положение:

«Химическое сродство выделяющихся веществ по отношению к электродам не имеет никакого влияния на собственно электролитический процесс» (кн. I, стр. 471) – положение, которое в этой абсолютной форме, как мы видели, совершенно неверно. Отсюда же у него и троякая теория образования тока: во‑первых, старая, традиционная теория на основе чистого контакта; во‑вторых, теория, основывающаяся на уже более абстрактно понимаемой электрической разъединительной силе, которая непонятным образом доставляет себе или «электролитическому процессу» энергию, необходимую, чтобы оторвать друг от друга в цепи Н и Cl и сверх того образовать еще ток; наконец, современная химико‑электрическая теория, доказывающая, что источником этой энергии является алгебраическая сумма всех химических действий в цепи. Подобно тому как Видеман не замечает, что второе объяснение опровергает первое, точно так же он не догадывается, что третье, со своей стороны, уничтожает второе. Наоборот, у него положение о сохранении энергии чисто внешним образом пристегивается к старой традиционной теории, подобно тому как прибавляют новую геометрическую теорему к прежним теоремам. Он вовсе не догадывается о том, что это положение делает необходимым пересмотр всех традиционных взглядов как в этой области естествознания, так и во всех других. Поэтому‑то Видеман ограничивается тем, что просто констатирует его при объяснении тока, а затем спокойно откладывает его в сторону, чтобы снова извлечь лишь в самом конце книги, в главе о действиях тока. Даже в теории возбуждения электричества контактом (кн. I, стр. 781 и следующие) учение о сохранении энергии не играет никакой роли при объяснении главной стороны дела и привлекается лишь мимоходом для разъяснения побочных пунктов: оно является и остается «вторичным процессом».


Дата добавления: 2018-10-26; просмотров: 175; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!