Электромиграция ионов в металлических проводниках



 

     В процессе эксплуатации микросхем и других полупроводниковых приборов происходит деградация физико-химических свойств металлических проводников, что может привести к параметрическим (постепенным) или катастрофическим (внезапным) отказам. Отказы, связанные с процессами, протекающими в металлических проводниках, являются основными для интегральных микросхем в случае их использования при повышенных нагрузках (около 25 % всех отказов). Причина отказов может состоять в разрыве проводников на ступеньках окисла, в коррозии металла, во взаимодействии окисла с металлом при локальных увеличениях температуры, разрыве проводников и нарушении контакта с кремнием вследствие электромиграции ионов металла проводника.

     Особую роль играет электромиграция – процесс переноса вещества проводника при высоких плотностях тока (более 5×104 А/см2 при температурах выше 150 °С). Электромиграция возникает вследствие взаимодействия электронов, движущихся в проводнике, с ионами металла, передаче им импульса, в результате чего ион перемещается в направлении движения электронов (увлекается «электронным ветром»). Поскольку характер движения ионов в металле представляет собой последовательность перескоков в соседние вакантные узлы, то механизм этого процесса аналогичен механизму диффузии атомов в твердой фазе, поэтому данный процесс часто называют электродиффузией.

     В металлическом проводнике на термически возбужденный междоузельный ион действую две противоположно направленных силы: сила Fz со стороны электрического поля в проводнике и сила Fe, обусловленная увлечением иона «электронным ветром». Результирующая сила Fi будет равна

Fi = (qi - enls)E ,

где qi - заряд иона; e - заряд электрона; n - концентрация электронов; l - длина свободного пробега электронов; s - сечение рассеяния электронов на междоузельных ионах; Е - напряженность поля в проводнике.

     В результате экранирующего влияния электронов проводимости действие электрического поля на ионы металла незначительно. Поэтому при повышенных температурах и больших плотностях тока преобладает сила Fe, под воздействием которой междоузельные ионы увлекаются «электронным ветром» и перемещаются в соседнюю вакансию преимущественно в направлении движения электронов. Ионы скапливаются у конца проводника с высоким потенциалом, образуя вдоль проводника кристаллиты в виде «бугорков», «усов» и так далее, способные закоротить близко расположенные проводники. Вакансии движутся в направлении конца проводника с низким потенциалом, в результате чего в отдельных участках образуются пустоты, и, как следствие, разрывы металлизации.

     Скорость электромиграции ионов vi в проводнике определяется выражением

 

 

где r - удельное сопротивление проводника; j - плотность тока; D - коэффициент диффузии; Ea - энергия активации диффузии.

     Электромиграция ионов в проводнике осуществляется в основном по границам зерен, поскольку в этих местах энергия активации Еа ниже, чем в самом зерне. Пустоты чаще всего возникают в местах пересечения зерен, в так называемых «тройных точках». Поэтому в мелкозернистых структурах электромиграция проявляется сильнее, и мелкозернистые пленки (при прочих равных условиях) деградируют быстрее, чем крупнозернистые. На отказы, вызванные электромиграцией, также влияют градиенты температур и структурная неоднородность металлической пленки.

     Экспериментально установлено, что проводники из алюминия особенно сильно подвержены влиянию электромиграции. Их стабильность можно повысить, формируя пленки с крупнозернистой структурой. Благоприятно сказывается введение в алюминий различных добавок, например, 0,5-5 массовых процентов меди. Устойчивы к электромиграции сплавы  Al-Cu-Mg и Al-Cu-Ni-Mg, но при этом заметно увеличивается удельное сопротивление. Считается, что выпадение на границах зерен второй фазы, например Al2Cu, блокирует миграцию ионов по границам зерен и, тем самым, повышает стабильность алюминиевых проводников.

     Уменьшить влияние электромиграции можно также с помощью формирования на поверхности металлической пленки защитного покрытия из диэлектрического материала. Защитное покрытие ограничивает подвижность ионов вдоль поверхности металлической пленки вследствие заполнения разрушенных электронных связей. В качестве покрытия используют фосфоро- или алюмосиликатные стекла, представляющие собой аморфные смеси SiO2×P2O5 и SiO2×Al2O3. Экспериментально установлено, что такие диэлектрические покрытия эффективны для ограничения электромиграции в тонких металлических пленках, толщина которых не превышает 500 нм.

 


Дата добавления: 2018-05-12; просмотров: 954; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!